

COMPARATIVE TOXICOLOGICAL AND BIOCHEMICAL STUDIES OF SOME INSECTICIDES AND ENTOMOPATHOGENIC AGENTS ON THE PEACH FRUIT FLY, *BACTROCERA ZONATA*(SAUND.)

(DIPTERA:TEPHRITIDAE)

A THESIS

PRESENTED TO FACULTY OF SCIENCE
AIN- SHAMS UNIVERSITY, FOR THE AWARD OF
THE Ph.D. DEGREE OF SCIENCE
ENTOMOLOGY

BY

FATEN ATTWA AKEL

B.SC., FACULTY OF SCIENCE BENHA UNIVERSITY1999 M.SC., FACULTY OF SCIENCE BENHA UNIVERSITY2009

Supervised by

Prof. Dr. Soad Abu-El-Seoud El-Sayed

Professor of Entomology Faculty of Science Ain-Shams University

Prof. Dr. Abdel-Aziz Abu-El-Ela Khidr

Professor of Entomology
Plant Protection Research Institute

Prof. Dr. Zahia Kamel Mostafa

Professor of Entomology
Faculty of Science
Ain-Shams University

Prof. Dr. Ahmed Mahmoud Zaki

Professor of Entomology
Plant Protection Research Institute

Department of EntomologyFaculty of Science

Ain-Shams University

2014

ACKNOWLEDGEMENT

Ultimate thanks to "ALLAH".

I would like to express my deepest appreciation respect to **Prof. Dr. Soad Abu-El-Seoud**, Professor of Entomology, Faculty of Science, AinShams University for her kind supervision, faithful encouragement and for reading and correcting the manuscript.

The author wishes to express her sincere thanks to **Prof. Dr. Zahia Kamel Mostafa**, Professor of Entomology, Faculty of Science, AinShams University for her keen supervision, help and for reading and correcting the manuscript.

I wish to express my deepest gratitude to **Prof. Dr. Abde-El-Aziz Abu-El-Ela Khidr**, Professor of Entomology, Plant Protection Research Institute for suggesting the problem, for his direct supervision, generous assistance, continuous support and encouragement.

I wish to express my sincere thanks to **Prof. Dr. Ahmed Mahmoud Zaki**, Professor of Entomology, Plant Protection Research Institute for his kind help and encouragement.

The author wishes to express her sincere thanks to **Dr. Walaa Gamil** researcher of Entomology, Plant Protection Institute for her kind help and for the statistical analysis of this work.

My thanks are due to members of Horticulture Insects Department, Plant Protection Research Institute for their kind help.

Finally, heartfelt thanks are to **my mother**, and my deep gratitude for every one who supported me in this work.

الْهَالُولُ اللَّهُ اللَّهُ لَلَا إِلَّا مَا عُلَامُ لَلَا اللَّهُ الْهَا إِلَّا مَا عُلَامُكُ الْهُ الْمُحَاذِبُ الْمُحَاذِبُ الْمُحَادِبُ الْمُحْدِبُ الْمُحْدُبُ الْمُحْدُبُ الْمُعُمُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُادُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُادُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُ الْمُعُمُ الْمُحْدُبُولُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُوبُ الْمُحْدُبُ الْمُحْدُبُ الْمُحْدُبُولُ الْمُحْدُبُ الْمُحْدُبُ الْمُعُمُ الْمُحْدُبُ الْمُحْدُبُ الْمُعُمُ الْمُحْدُبُ الْمُعُمُ الْمُعُمُ الْمُعُمُ الْمُعُمُ الْمُعُمُ الْمُعُمُ الْمُعُمُ الْمُعُلُولُ الْمُعُولُ الْمُعُمُ الْمُعُمُ الْمُعُمُ الْمُعُ

مر مرادد کی از کرد کی از میں کا میں کے اس کے اس کے اس کے اس کی میں کہ کرد کی میں کہ کے اس کے اس کے اس کی کرد گ میں میں میں کرد کرد کرد کرد کرد کے اس کے اس کے اس کے اس کے اس کی کرد کرد کرد کی کرد کرد کی کرد گرفتا کی کرد گ

CONTENTS

Title	Page
ABSTRACT	i
LIST OF TABLE	<u>II</u>
LIST OF FIGURES I- INTRODUCTION	<u>V</u> 1
II- REVIEW OF LITERATURE	
	4
I. Toxicological and biological studies on the peach fruit fly, Bactrocera zonata	4
2. Biochemical studies	1.4
III. MATERIALS AND METHODS	14 21
1. Test insects	21
1.1. Laboratory strain	22
1.2. Field colony strains	22
1.3. Insecticide resistance strain	22
2. Materials used	23
2.1. Organophosphorus insecticides	24
2.2. Miscellaneous insecticides	25
2.3. Entomopathogenic agents	25
2.3.1. Entomopathogenic fungi	25
2.3.2. Entomapathogenic nematodes	25
3. Methods of Application	25
3.1 Soil treatment	25
a) Prepupal treatment	26
b) Persistence of the tested toxicants in soil	26
3.1 Discriminating concentration technique	26
4.Effect of the tested chemicals on the biological aspects of the peach fruit fly, <i>B. zonata</i>	27
5. Biochemical assays:	28
5.1. Hydrolases activity:	29
5.1.1. Determination of acetylcholinesterase (AChE.) activity	29
5.1.2. Determination of alkaline and acid phosphatases activity	29
5.1.3 Determination of non-specific esterases activity	30
5.2. Determination of glutathione S- transferase	30
5.3. Determination of Oxidases activitiy	31
5.4. Determination of total proteins	31
a) Preparation of protein reagent	32
b) Protein assay:	32
6. Statistical analysis	32

Title	Page
VI. RESULTS	33
1.Effectiveness of six toxicants against prepupae, pupae and adults of	33
the peach fruit fly, Bactrocera zonata	
1.1. Organophosphorus insecticides (Actellic, Malathion and Dimethoate)	33
1.2. Miscellaneous insecticide and entomopathogenic agents	40
1.2.1 The miscellaneous toxicant, Abamectin	40
1.2.2 The entomopathogenic fungi, Bio-power <i>Beauvaria bassiana</i>	43
1.2.3 The entomopathogenic nematodes Steinernema feltiae	46
2. Total Toxicity	46
2.1. Comparison on basis of LC ₅₀ and LC ₉₀ values	46
2.2. Comparison on basis of toxicity index and potency levels	51
2.3. Comparison on slope of toxicity lines	54
3. Persistence of the six tested toxicants	56
3.1. Organophosphorus insecticides	56
3.1.1. Malathion	56
3.1.2. Dimethoate	59
3.1.3. Actellic	62
3.2. The miscellaneous toxicant; Abamectin	65
3.3.1. The entomopathogenic fungi, Bio-power, <i>Beauvaria bassiana</i>	68
3.3.2. The entomopathogenic nematodes, <i>Steinernema feltiae</i>	68
4. Monitoring insecticidal resistance in the field colony of <i>B. zonata</i> flies	73
collected from different Governorates to Malathion toxicity by using	
discriminating concentration technique 5.Determination of biochemical aspects in field colony strains collected	75
from different governorates and the laboratory strain of <i>B. zonata</i>	13
5.1. Hydrolases activity	75
5.1.1 Alkaline and acid phosphatases activity	78
5.1.2. Non-specific esterases	81
5.1.3. Acetyl cholinesterase activity (AChE.)	84
5.2. Glutathione S- transferses	87
5.3. Mixed function oxidase	90
5.4. Total protein contents	93
6.Development of resistance in the flies of the peach fruit fly, <i>B.zonata</i> to the toxic action of Malathion	93
7. Effect of the six toxicants on the biotic potential of <i>B.zonata</i>	99
V- DISCUSSION	107
VI- SUMMARY	133
VII- LITERATURE CITED	141
ARABIC SUMMARY	171

LIST OF TABLES

	Title	Page
Table (1)	Effectiveness of Malathion incorporated in fine sandy soil on prepupae, pupae and adults of <i>Bactrocera zonata</i> .	34
Table (2)	Effectiveness of Dimethoate incorporated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	36
Table (3)	Effectiveness of Actellic incorporated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	38
Table (4)	Effectiveness of Abamectin incorporated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	41
Table (5)	Effectiveness of Bio-power incorporated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	44
Table (6)	Effectiveness of <i>Steinernema feltiae</i> incorporated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	47
Table (7)	Susceptibility status in the prepupae of <i>B. zonata</i> to the six toxicants incorporated into sandy soil.	49
Table (8)	Comparative studies on the toxicity index and potency levels of six toxicants incorporated in sandy soil applied against the prepupae of <i>B. zonata</i> .	53
Table (9)	Slope values, LC_{90} / Lc_{50} ratios and relative potency levels of the six toxicants applied against the prepupae of <i>B. zonata</i> .	55
Table (10)	Effectiveness of Malathion against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	57
Table (11)	Effectiveness of Dimethoate against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	60
Table (12)	Effectiveness of Actellic against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	63
Table (13)	Effectiveness of Abamectin against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	66

	Title	Page
Table (14)	Effectiveness of Bio-power against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	69
Table (15)	Effectiveness of <i>Steinernema feltiae</i> against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	71
Table (16)	Effectiveness of Malathion against the laboratory strain of <i>B. zonata</i> flies.	74
Table (17)	Response of the peach fruit fly, <i>B. zonata</i> flies collected from different Governorates to discriminating concentration of Malathion using surface film technique.	76
Table (18)	Alkaline and acid phosphatases in the whole homogenates of different field colony strains of <i>B. zonata</i> flies compared with the laboratory strain.	79
Table (19)	α and β esterases activity in the whole homogenates of different field colony strains of <i>B. zonata</i> flies compared with the laboratory strain.	82
Table (20)	Acetyl cholinesterase activity in the whole homogenates of different field colony strains of <i>B. zonata</i> flies compared with the laboratory strain.	85
Table (21)	GlutathioneS-transferase activity in the whole homogenates of different field colony strains of <i>B. zonata</i> flies compared with the laboratory strain.	88
Table (22)	Mixed function oxidases activity in the whole homogenates of different field colony strains of <i>B. zonata</i> flies compared with the laboratory strain.	91
Table (23)	Total protein activity in the whole homogenates of different field colony strains of <i>B. zonata</i> flies compared with the laboratory strain.	94
Table (24)	Development of resistance in the adults of the peach fruit fly, <i>B. zonata</i> to the toxic action of Malathion.	96
Table (25)	Effect of LC ₅₀ values of the six toxicants on the pre- and oviposition periods of B . zonata flies emerged from treated prepupae.	101
Table (26)	Effect of LC ₅₀ values of the six toxicants on the number of	105

	Title	Page
	eggs laid per female and its reduction percentages of <i>B. zonata</i> flies emerged from treated prepupae.	
Table (27)	Effect of LC ₅₀ values of the six toxicants on the egg hatchability and its reduction percentages of <i>B. zonata</i> flies emerged from treated prepupae.	110
Table (28)	Effect of LC $_{50}$ values of the six toxicants on the sterility percentages of <i>B. zonata</i> flies emerged from treated preupae.	114

LIST OF FIGURES

	Title	Page
Fig. (1)	Effectiveness of Malathion incorporated in fine sandy soil on perpupae, pupae and adults of <i>B. zonata</i> .	35
Fig.(2)	Effectiveness of Dimethoate incorporated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	37
Fig.(3)	Effectiveness of Actellic incorporated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	39
Fig.(4)	Effectiveness of Abamectin incorporated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	42
Fig.(5)	Effectiveness of Bio- power incorporated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	45
Fig.(6)	Effectiveness of <i>Steinnernema filtae</i> incorportated in fine sandy soil on prepupae, pupae and adults of <i>B. zonata</i> .	48
Fig. (7)	Toxicity lines of the six toxicants incroprated into sandy soil against prepupae of the peach fruit fly, <i>B. zonata</i> basd on total toxicity percentages.	50
Fig.(8)	Effectiveness of Malathion against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	58
Fig.(9)	Effectiveness of Dimethoate against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	61
Fig.(10)	Effectiveness of Actellic against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	64
Fig.(11)	Effectiveness of Abamectin against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	67
Fig.(12)	Effectiveness of Bio- power against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	70

	Title	Page
Fig.(13)	Effectiveness of <i>St. feltiae</i> against prepupae of the peach fruit fly, <i>B. zonata</i> after different intervals from soil treatment expressed as total mortality percentages.	72
Fig.(14)	Response of the peach fruit fly, <i>B. zonata</i> adults collected from different governorates to discriminating concentrations of Malathion using surface film technique.	77
Fig. (15)	Alkaline and acid phosphases activity in the whole homogenates of different field colony strains of <i>B. zonata</i> flies.	80
Fig. (16)	α and β estrases activity in the whole homogenates of different field colony strains of <i>B. zonata</i> flies.	83
Fig. (17)	Aceylcholinesterase activity in the whole homogenates of different field colony strains of <i>B. zonata</i> flies.	86
Fig. (18)	Glutathione S-transferase activity in the whole homogenates of different colony strains of <i>B. zonata</i> flies.	89
Fig. (19)	Mixed function oxidases activity in the whole homogenates of different field colony strains of <i>B. zonata</i> flies.	92
Fig. (20)	Total protein content in the whole homogenates of different field colony strain of <i>B. zonata</i> flies.	95
Fig. (21)	Toxicity Regression lines of Malathion developed resistance strains of <i>B. zonata</i> flies.	97
Fig. (22)	Development of resistance among generations of Malathion pressured flies of the peach fruit fly, <i>B. zonata</i> expressed in times.	98
Fig. (23)	Effect of LC_{50} values of the six toxicants on the pre- oviposition period of <i>B. zonata</i> flies emerged from treated prepupae.	102
Fig. (24)	Effect of LC_{50} values of the six toxicants on the oviposition period of <i>B. zonata</i> flies emerged from treated prepupae.	103

	Title	Page
Fig. (25)	Effect of LC ₅₀ values of the six toxicants on number of eggs/female of <i>B. zonata</i> flies emerged from treated prepupae.	106
Fig. (26)	Effect of LC ₅₀ values of the six toxicants on reduction percentages in number of eggs laid per female of <i>B. zonata</i> flies emerged from treated prepupae	109
Fig. (27)	Effect of LC ₅₀ values of the six toxicants on the eggs hatchability percentages of <i>B. zonata</i> flies emerged from treated prepupae.	111
Fig. (28)	Effect of LC ₅₀ values of the six toxicants on reduction percentages in the eggs hatchability of <i>B.zonata</i> flies emerged from treated prepupae	113
Fig. (29)	Effect of LC ₅₀ values of the six toxicants on the sterility percentages of <i>B. zonata</i> flies emerged from treated prepupae.	115

I- INTRODUCTION

The peach fruit fly, *Bactrocera zonata* (saund.) (Diptera: Tephritidae) is one of the most harmful species of Tephritidae. It causes a large amount of damage in Asia (Agarwal *et al.*, 1999), and it is a serious pest of peach *Prunus persica* L. (Annonaceae) in India (Grewal and Malhi, 1987), as well as guava *Psidium guava* L. (Myrtaceae) and mango *Mangifera indica* L. (Anacardiaceae) in Pakistan (Sayed *et al.*, 1970). It is a polyphagous species attacking about 40 species of fruits and vegetables (White and Elson-Harris, 1992) and also has been recorded from wild host plants of families Euphorbiaceae, Lecythidaceae and Rhamnaceae (Kapoor and Agarwal, 1983).

According to **FOA/IAEA** report **(2000)**, the economic loss of *B. zonata* infestation to horticultural plantfruits was estimated as 190 million EUR/ year in Egypt. The pest is present in numerous countries of tropical Asia, India, Indonesia, Laos, Serilanka, Vitenam and Thailand (**White and Elson-Harris, 1992**). Also, *B. zonata* is present in Buma, Nepal, Bangladesh and probably all of South East Asia (**Kapoor, 1993**)

The peach fruit fly, *B. zonata* was recorded in Egypt in 1924(Efflaton, 1924), but it hasn't any distribution before the 90's of 20th century. Hashem *et al.* (2001) mentioned that this pest infested mango, apple, guava and citrus in Egypt, and they added that the population increased gradually with fruiting and riping. El-Minshawy *et al.* (1999) mentioned that larvae of *B. zonata* were found seriously in Alexandria. El-Samea and Fetoh (2006) found that potato tubers which were collected from Giza Governorate, Egypt during 2004 were infested by *Bactrocera zonata* and this record was considered the first report of this pest in Egypt.

Recently, **El-Aw** *et al.* **(2008)** stated that the peach fruit fly, *B. zonata* is a newly recorded species in Egypt last decade. For an attempt to control the horticultural pests, insecticides have been widely used and extensively produced. Accordingly, the large scale use of toxicants against several agricultural pests including the peach fruit fly, *B. zonata* has frequently led to the development of insect strain resistance to many insecticides which were designed for their controlling.

Resistance to chemical insecticides is wide spread among a large number of insect species. Detoxification of insecticide by metabolism is the common mechanism that has evolved to protect insects (**Price**, 1991). Early detection of insecticide resistance provides a basis for the management of resistant pest populations (**El-Zen** *et al.*, 1992). Development of resistance countermeasures depend on nature, frequency and evolution of resistance mechanisms in field populations of pest insects (**Brent**, 1986). Rapid biochemical assays are potential tools for estimating the intensity and the frequency of resistance in the field (**Brown and Brogodon**, 1987).

Management of *B. zonata* can be targeted at two general areas: preventing infestation of the peach fruit fly, and eliminating sources of infestation. Pest management based on identifying these sources of infestation, and targeting pest management is an important component of less chemically intensive management program. It is also potentially a better fit for biological control than applications targeted at preventing infestations within the stored commodity (Scholler and Flint, 2000).

To avoid chemical pollution it is necessary to find out more safe alternative methods for controlling this pest. These alternative methods in integrated pest management programs include the use of different methods to minimize its damage with minimum risk to the environment and human health.