دراسة مراقبة ضغط الدم المتنقلة على إرتفاع ضغط الدم في الأطفال المصابين بالفشل الكلوي

رسالة

توطئة للحصول على درجة الماجيستير في طب الأطفال

الطبيبة/ساره محمد محمود أحمد أبوالعنين

بكالوريوس الطب و الجراحة () جامعة عين شمس

تدته إشراهم

أ.د/ إيهاب زكي الحكيم

أستاذ طب الأطفال كلية الطب جامعة عين شمس

د/أحمد حسين حسن

رس طب الأطفال كلية الطب-جامعة عين شمس

كلبة الطبح

Ambulatory Blood Pressure Monitoring For Hypertension in Pediatric Hemodialysis Patients

Thesis Submitted for partial fulfillment of Master Degree in Pediatrics

PRESENTED BY

Sara Mohammad Mahmoud Ahmed Abu El-enein M.B., B.Ch. (2011). Ain Shams University

UNDER SUPERVISION OF Prof. Dr. Ihab Zaki El-Hakim

Professor of Pediatrics
Faculty of Medicine, Ain-Shams University

Dr. Ahmed Hussein Hassan

Lecturer of Pediatrics Faculty of Medicine, Ain-Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

2015

بسم الله الرحمن الرحيم

قُلْ إِنَّنِي هَدَانِي رَبِّي إِلَى صِرَاطٍ مُسْتَقِيمٍ دِينًا قِيَمًا مِلَّةَ إِبْرَاهِيمَ حَنِيفًا وَمَا كَانَ مِنَ الْمُشْرِكِينَ (١٦١) قُلْ إِنَّ صَلَاتِي وَنُسُكِي وَمَحْيَايَ وَمَا كَانَ مِنَ الْمُشْرِكِينَ (١٦٦) قُلْ إِنَّ صَلَاتِي وَنُسُكِي وَمَحْيَايَ وَمَا كَانَ مِنَ الْمُشْرِكِينَ (٢٦٢) لَا شَرِيكَ لَهُ وَبِذَلِكَ أُمِرْتُ وَأَنَا أَوَّلُ وَمَمَاتِي لِلَّهِ رَبِّ الْعَالَمِينَ (٢٦٢) لَا شَرِيكَ لَهُ وَبِذَلِكَ أُمِرْتُ وَأَنَا أَوَّلُ اللهِ رَبِّ الْعَالَمِينَ (٢٦٣)

صدق الله العظيم

سورة الأنعام الأيات (١٦١-١٦٣)

First thanks to **ALLAH** to Whom I relate any success in achieving any work in my life.

Words fail to express my honor to express my endless gratitude and extreme appreciation to **Prof. Ihab Zaki El-Hakim**, professor of pediatrics, faculty of medicine, Ain Shams University for his valuable supervision, guidance, endless help, encouragement, sincere concern and his motivation throughout this work.

In Addition, I express my deep gratitude and extreme appreciation to **Dr. Ahmed Hussein Hassan**, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for his kind and endless support to bring out this piece of work, and from whom I learnt a lot of patience, discipline and accuracy.

Words cannot express my deepest appreciation and gratitude to my family especially **my husband** who supported me to the extreme during this work and though out my life, Thanks for my mother's praying for me that have blessed all my work. God bless them all.

Also, Words fail to express my feelings and appreciation to all Doctors and staff members of the Nephrology Unit who helped one of the most important dreams in my life to come true.

To All the patients and their families who offered a great help in making such a work to exist, I offer them my deepest regards.

Finally, special thanks to my daughter Rodaina for getting born before my thesis discussion.

Sara Abu el-eneín

List of Contents

Title Page No.
List of Abbreviationsii
List of Tablesiv
List of Figuresv
List of Equationsvi
Introduction and Aim of the Work
Review of Literature
• Chronic Kidney Disease
• Arterial Hypertension
Patients and Methods55
Results
Discussion69
Summary
Conclusion
Recommendations
References
Arabic Summary

List of Abbreviations

Abb.	Full term	
ABPM	Ambulatory blood pressure monitoring	
ACE	Angiotensin Converting enzyme	
ACR	Albumin – creatinine ratio	
AHA	American Heart Association	
AKI	Acute kidney injury	
ARBs	Angiotensin II receptor blockers	
BP	Blood pressure	
CAKUT	Congenital anomalies of the kidney and	
	urinary tract	
CAPD	Continuous ambulatory peritoneal dialysis	
CBP	Clinic blood pressure measurements	
CCPD	Continuous cycling peritoneal dialysis	
CKD	Chronic kidney disease	
CT	Computed tomography	
CVD	Cardiovascular disease	
DBP	Diastolic Blood Pressure	
DW	Dry Weight	
ECW	Extra Cellular Water	
EPO	Recombinant human erythropoietin	
ESC	European Society of Cardiology	
ESCAPE	Effect of Strict Blood Pressure Control and	
	ACE-Inhibition on Progression of Chronic	
	Renal Failure in Pediatric Patients	
ESH	European Society of Hypertension	
ESRD	End-stage renal disease	
GFR	Glomerular Filtration Rate	
GH	Growth hormone	
HBP	Home blood pressure measurements	
HD	Hemodialysis	
HTN	Hypertension	
ICH	International Conference on Harmonisation	

List of Abbreviations (Cont...)

Abb.	Full term	
IgA	Immunoglobulin A	
J-MORE	Jichi Morning Hypertension Research	
JNC-7	Joint National Committee-7	
KDIGO	Kidney Disease Improving Global Outcomes	
KDOQI	Kidney Disease Outcome Quality Initiative	
LVH	Left ventricular hypertrophy	
LVMI	Left ventricular mass index	
MAP	Mean Arterial Pressure	
MDRD	Modification of Diet in Renal Disease	
MRI	Magnetic resonance imaging	
NAPRTCS	North American Pediatric Renal Trials and	
	Collaborative Studies	
NICE	National Institute for health and Care	
	Excellance	
NIDDK	National Institute of Diabetes and Digestive	
	and Kidney Diseases	
NIH	National Institutes of Health	
NKF	National Kidney Foundation	
PARADE	Proteinuria, albuminuria, risk, assessment,	
70	detection, elimination	
PD	Peritoneal dialysis	
PKD	Polycystic kidney disease	
RAS	Renin Angiotensin System	
RRT	Renal replacement therapy	
SBP	Systolic Blood Pressure	
SMR	Standardized Mortality Rate	
USRDS	United States Renal data System	
WCH	White-coat HTN	

List of Tables

Table No.	Title	Page No.
Table (1):	Classification of CKD by the KDOQI Group	
Table (2):	Causes of hypertension	25
Table (3):	Recommended Dimensions for Blood Pressure Cuff Bladder	
Table (4):	Blood pressure measurement equipme	ent38
Table (5):	Ampulatory blood pressure chart	45
Table (6):	Recommended initial doses for selected antihypertensive agents for the manage of hypertension in children and adolescents	gement
Table (7):	Clinical conditions for which specific antihypertensive drug classes are recommended or contraindications	
Table (8):	Antihypertensive drugs for hypertensive emergencies	
Table (9):	Distribution of symptomatology amor systolic arterial hypertension	_
Table (10):	Distribution of symptomatology amordiastolic arterial hypertension	•
Table (11):	Systolic arterial hypertension showing regular and ambulatory measurement groups.	
Table (12):	Diastolic arterial hypertension showing regular and ambulatory measurement groups	

List of Figures

Fig. No.	Title	Page No.
Figure(1): P	eritoneal dialysis technique and cathete	er15
Figure(2): H	lemodialysis technique and machine	17
Figure(3): T	ypes of access for hemodialysis	17
Figure (4): 7	The relationship between HTN and CK	D24
Figure (5): I	Hypertension – related renal complicati	ons27
Figure (6): 0	Complications of ESRD	28
Figure(7):	Parts of blood pressure measure apparatus	
Figure (8):	Available different cuff sizes	35
Figure (9):	How to choose the appropriate cuff size	ze36
Figure (10):	Korotkoff sounds	37
Figure (11):	Patient wearing ABPM device	41
Figure (12):	BPLab ambulatory blood pressure mo for children	
Figure (13):	BPLab software home page	58
Figure (14):	One of our study patients wearing BPLab device	
Figure (15):	BPLab blood pressure data	60
Figure (16):	Algorithm for distribution of hypert among studied patients	
	Shows control distribution for S	•
Figure (18):	Shows control distribution for Di	

List of Equations

Equation. No	. Title	Page No.
Equation (1):	Cockcroft–Gault equation	12
Equation (2): A	bbreviated MDRD study equ	ation12

Introduction

Cardiovascular disease is the major cause of morbidity and mortality in patients with chronic kidney disease (CKD) Stage 5 and accounts for approximately 50% of deaths (*Rocco et al, 2002*).

The cardiovascular risk factors among patients with CKD Stage 5 may be divided into those that are nonspecific to kidney disease but are more prevalent, and those that are specific to CKD Stage 5. The latter are undoubtedly important, since patients with CKD Stage 5 have disease-related risk factors such as anemia, hyper-homocysteinemia, hyperparathyroidism, oxidative stress, hypoalbuminemia, and chronic inflammation and prothrombotic factors. In addition, data suggest that uremic factors or factors related to renal replacement therapy (RRT)/dialysis may be implicated in the pathogenesis of heart disease in patients treated by dialysis, because cardiovascular survival improves after transplantation even in high-risk patients (*K/DOQI guidelines*, 2005).

In addition, patients on dialysis there is also increased prevalence of many traditional factors for cardiovascular risk (age, male gender, hypertension, diabetes, dyslipidemia, and physical inactivity); among these, hypertension is the most important risk factor for the development of cardio and cerebrovascular complications and the leading cause of morbidity and mortality in dialysis patients. However, despite the universally recognized detrimental effect of hypertension in dialysis patients, 60–70 % of patients reported on clinical studies performed in Europe as well as in North America

remains hypertensive while undergoing hemodialysis (HD) (Grekas et al, 2001).

The relationship between hypertension (HTN) and CKD is cyclic in nature. Uncontrolled HTN is a risk factor for developing CKD, is associated with a more rapid progression of CKD, and is the second leading cause of ESRD in the United States (U.S) (*Botdorf et al, 2011; Segura et al, 2011*).

Meanwhile, progressive renal disease can exacerbate uncontrolled HTN due to volume expansion and increased systemic vascular resistance. Multiple guidelines discuss the importance of lowering blood pressure (BP) to slow the progression of renal disease and reduce cardiovascular morbidity and mortality (*Chobanian et al, 2003; American Diabetes Association, 2012*).

The main cause of such a poor control has been identified as the difficulty in obtaining optimal dry weight, coupled with large inter-dialytic weight gain and unrestricted, often excessive dietary sodium intake (*Locatelli et al*, 2004).

Elevated BP is frequent also in children on long-term dialysis therapy. However, the prevalence of hypertension and status of BP control in these patients are lacking. Uncontrolled hypertension was defined as BP equal to or greater than age, 95th height-specific percentiles; and controlled sex. hypertension was considered in children who were administered antihypertensive medications, but had BP less than the 95th percentile. Normotensive children at baseline had significant BP increases, whereas hypertensive children at baseline had significant BP decreases during the first year of dialysis therapy. BP did not change significantly after 1 year of dialysis

therapy; 51% of patients had uncontrolled hypertension after 1 year of maintenance dialysis therapy. Logistic regression analysis shows that baseline hypertensive status and use of BP medications are both large significant risk factors for subsequent hypertension. Other risk factors include young age, acquired cause of renal failure, black race, duration of dialysis, and hemodialysis as a mode of renal replacement therapy (*Mitsnefes and Stablein, 2005*).

The best method and timing of blood pressure (BP) measurement in end-stage renal disease are subject to controversy. This issue is especially relevant in hemodialysis patients, where unique causes of inaccuracy may exist. The lack of standardization of BP measurement in the dialysis unit may lead to misdiagnosis, so close attention must be paid to technical methods to obtain BP (*Sankaranarayanan et al*, 2004).

A further, additional problem in the evaluation of BP measurements is that uremic patients can lose the usual diurnal variation in blood pressure, possibly leading to nocturnal hypertension (*Santos and Peixoto*, 2005). Thus, even patients supposed to be well controlled with daytime BP measurements may be at risk for hypertension-induced cardiovascular morbidity (*Liu et al*, 2003).

A strong link between blood pressure variations and interdialytic body weight gain, show the important participation of volume state in modulating blood pressure in dialysis patients (*Kooman et al, 2004*).

Interdialytic BP monitoring with an ambulatory BP monitor is the most reproducible method and is thought to best represent BP in dialysis patients. Alternative forms of BP measurement, such as home BP, 20-minute post dialysis BP, and short (3-hour to 4-hour) ambulatory blood pressure monitoring (ABPM), could prove useful when feasible or available. However, continuous monitoring is warranted in patients suspected of poor control, such as those with large interdialytic weight gain, the results being reasonably reproducible. If available, ambulatory BP is a useful tool to evaluate the quality of BP control in the interdialytic period (*Sankaranarayanan et al, 2004*).

Aim of the work

To evaluate ambulatory blood pressure monitoring among pediatric patients on regular hemodialysis.

Chapter (1)

Chronic Kidney Disease

Chronic kidney disease is a worldwide public health problem (*United States Renal Data System*, 2000). CKD is a serious health problem, often associated with other common chronic diseases such as diabetes, hypertension, and cardiovascular disease (CVD) (*Go et al*, 2004).

Prior to 2002, the term chronic renal insufficiency was used to characterize patients who had progressive decline in renal function, defined as a glomerular filtration rate (GFR) of less than 75 mL/min per 1.73 m2 body surface area. Chronic kidney disease (CKD) is the new term defined by the National Kidney Foundation Kidney Disease and Outcome Quality Initiative (KDOQI) Group (*Whyte and Richard*, 2008).

CKD amplifies risk for multiple conditions: cardiac morbidity and mortality risk is elevated 10 times that of population mean risk (*Gansevoort et al, 2013*) length of hospital stay and adverse reactions to drugs are also increased (*Canadian Institute for Health Information, 2014*). People with CKD also have higher risk of acute kidney injury (AKI) (*Levin et al,2008*) AKI in those with existing CKD is associated with high morbidity and mortality (*KDIGO Clinical Practice Guideline for Acute Kidney Injury,2014a*).

The major outcomes of chronic kidney disease, regardless of cause, include progression to renal failure: