The Role of Serum Ornithine Carbamoyl-transferase And Ammonia in Both Cirrhotic Patients with And without Hepatic Encephalopathy

Thesis

Submitted for Partial Fulfillment of Master Degree in *Internal Medicine*

By

Mohamed Ahmed Ali Shehab El Deen

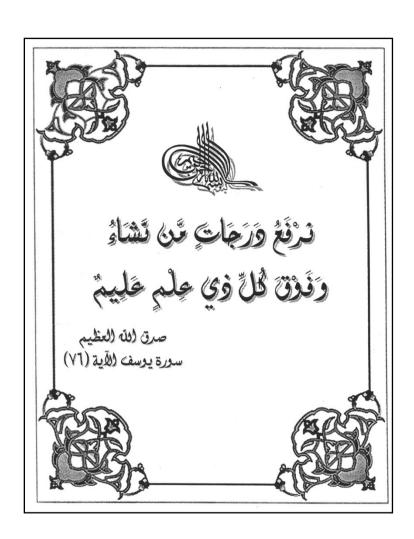
(M.B.B.Ch)

Faculty of Medicine, Alexandria University

Supervised By

Prof.Dr.Mohsen Moustafa Maher

Professor of Internal Medicine Faculty of Medicine, Ain Shams University


Prof.Dr.Hossam Abd El Aziz Mahmoud

Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Ass.Prof.Dr.Wesam Ahmed Ibrahim

Assistant Professor of Internal Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University 2014

ACKNOWLEDGMENT

First and Foremost thanks to Allah, the most merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof.Dr. Hossam Abd Aziz Mahmoud** Professor of Internal Medicine, Ain Shams University, for planning and supervision of this study, valuable instructions and continuous help.

My deepest gratitude to **Prof. Dr. Wessam Ahmed Ibrahim** Assistant Professor of Internal Medicine, Ain Shams
University, who generously supervised my work in a
supportive and educational way.

I would like to express my deep gratitude to **Prof.Dr. Mohsen Moustafa Maher**, Head of Gastro Intestinal

Department, Ain Shams University for his continuous

support.

I would like also to thank all my professors and my colleagues and my best friends for their great help.

LIST OF CONTENTS

Contents	Page
List of abbreviations	V
List of tables	VII
List of figures	X
• Introduction & Aim of the Work	1
Review of Literature	4
Liver Cirrhosis	4
Definition	
Pathogenesis	
Classification	
Major copmplications	
Diagnosis	
Prognosis	
Management	
Hepatic Encephalopathy	25
Definition	
Classification	
Precipitating factors	
Pathophysiology	
Pathology	
Clinical manifistations	
Diagnosis	
Differential diagnosis	
Prognosis	
Management	
Ammonia metabolism	58
Causes of hyper ammonaemia	
Interorgan ammonia and amino acid	
metabolism	
Ammonia metabolism in hepatic	

encephalopathy	
Pathophysiology	
Pathological effects of	
hyperammonaemia	
Ornithine Carbamoyle Transferase	72
Definition	
Pathophysiology	
Ornithine Carbamoyle Transferase	
gene	
Prevellance	
Diagnosis	
Complications	
Surveillance	
Prognosis	
• Patients and Methods	92
• Results	99
• Discussion	131
• Summary	139
• Conclusions	141
Recommendations	142
References	143
Arabic Summary	

LIST OF ABBREVIATIONS

<u>AAT</u>	Alanine Aminotransferase
<u>ACGH</u>	Array Comparative Genomic Hybridization
<u>ADHD</u>	Attention Deficit Hyperactivity Disorder
<u>ALC</u>	Acetyl-L-Carnitine
<u>ALD</u>	Argininosuccinate Lyase Deficiency
<u>ALF</u>	Acute Liver Failure
ALP	Alkaline Phosphatase
ALT	Alanine Aminotranseferase
AN	Autonomic Neuropathy
ASD	Argininosuccinate Synthetase Deficiency
<u>AST</u>	Aspartate Aminotranseferase
BBB	Blood Brain Barrier
<u>BCAA</u>	Branched Chain Amino Acids
BUN	Blood Urea Nitrogen
CBC	Complete Blood Count
<u>CH</u>	Chronic Hepatitis
<u>CHF</u>	Congestive Heart Failure
<u>CIT</u>	Citrulline
<u>CP</u>	Carbamoyl Phosphate
<u>CSF</u>	Cerebrospinal Fluid
<u>CT</u>	Compeuterized Tomography
<u>CTP</u>	Child-Turcotte-Pugh
<u>D.BIL.</u>	Direct Bilirubin
<u>EEG</u>	Electroencephalography
<u>GABA</u>	Gamma Amino Buteric Acid
<u>GDH</u>	Glutamate Dehydrogenase
<u>GGT</u>	Gamma Glutamyl Transferase.
<u>GIT</u>	Gastrointestinal Tract
<u>GLN</u>	Glutamine
<u>GRC</u>	Gaba Receptor Complex
<u>GRC</u>	Gaba Receptor Complex
<u>GS</u>	Glutamine Synthase
<u>H.PYLORI</u>	Helicobacter Pylori
<u>HB</u>	Hemoglobin
<u>HCC</u>	Hepatocellular Carcinoma
<u>HCT</u>	Hematocrit

HE	Hepatic Encephalopathy
HRQOL	Health-Related Quality Of Life
<u>ICP</u>	Intra Cranial Pressure
<u>IEM</u>	Inborn Errors Of Metabolism.
<u>IHA</u>	Idiopathic Hyperammonemia
INR	International Normalized Ratio
<u>IV</u>	Intravenous
<u>L.L</u>	Lower Limb
<u>M</u>	Mean
<u>MARS</u>	Molecular Adsorbents Recirculating System
<u>MHE</u>	Minimal Hepatic Encephalopathy
<u>MRI</u>	Magnetic Resonance Imaging
<u>MRS</u>	Magnetic Resonance Spectroscopy
<u>N</u>	Number
<u>NADS</u>	Non-Absorbable Disaccharides
<u>NH3</u>	Ammonia
<u>NH4</u> [±]	Ammonium
<u>NS</u>	Non Significant
<u>NSAID</u>	Non-Steroidal Anti-Inflammatory Drugs
<u>ORN</u>	Ornithine
OTC Ornithine Carbamoyle Transferase = Ornithine	
<u>01C</u>	Transcarbamoylase
<u>OTCD</u>	Ornithine Carbamoyle Transferase Deficiency
<u>PBC</u>	Primary Biliary Cirrhosis
<u>PCS</u>	Porto-Caval Shunts
<u>PCS</u>	Portacaval Shunt
<u>PET</u>	Positron Emission Tomography
<u>PHES</u>	Psychometric Hepatic Encephalopathy Score
<u>P.HTN</u>	Portal hypertension
$\underline{\mathbf{P}_{\mathbf{I}}}$	Phosphate
<u>PLT</u>	Platelets
PNH3	Partial Pressure Of Ammonia
<u>PSE</u>	Portal-Systemic Encephalopathy
<u>PT</u>	Prothrombine Time
<u>PTT</u>	Partial Thromboplastin Time
<u>PVT</u>	Portal Vein Thrombosis
RAAS	Renin-Angiotensin-Aldosterone-System
<u>RDCRN</u>	Rare Disease Clinical Research Network

List of Abbreviations

<u>SBP</u>	Spontaneous Bacterial Peritonitis
SD	Standard Deviation
SIRS	Systemic Inflammatory Response Syndrome
<u>SPECT</u>	Single Photon Emission Computed Tomography
<u>TAA</u>	Thioacetamide
<u>TH</u>	Therapeutic Hypothermia
<u>TIPSS</u>	Trans-Jugular Intrahepatic Porto-Systemic Shunt
<u>TPN</u>	Total Parenteral Nutrition
<u>U/S</u>	Ultrasound
<u>UCDC</u>	Urea Cycle Disorders Consortium
<u>UCDS</u>	Urea Cycle Disorders
<u>US</u>	United States

LIST OF TABLES

Table No.	Title	Page No.
	Tables of the review:	
1	Child-Turcotte-Pugh classification of cirrhosis	12
2	Child –Pugh class A to C	13
3	Classification of HE	25
4	factors Precipitating hepatic encephalopathy in patients with chronic liver disease	
5	West Haven classification for grading mental status in HE	
6	West Haven criteria of altered mental state in HE	39
7	Level of consciousness with Glasgow coma scale	40
8	The portal-systemic encephalopathy score (PSE).	40
9	Differential diagnosis of hepatic encephalopathy	
10	Causes of hyperammonemia in adults	
11	Differential diagnosis of neonatal UCDs	
	Tables of the results:	
12	comparison between the studied groups according to sex	99
13	comparison between the studied groups according to age	100
14	Comparison between the studied groups as regard clinical symptoms	101
15	Comparison between the studied groups as regard clinical signs	102
16	Comparison between the studied groups as regard ultra sonographic findings	103
17	Comparison between the three studied groups as regard serum urea level	104
18	Comparison between the three studied groups as regard serum creatinine level:	105

10	Comparison between the three studied groups as	106	
19	regard total bilirubin level	106	
20	Comparison between the three studied groups as	107	
	regard direct bilirubin level	107	
	Comparison between the three studied groups as regard AST level:	108	
	Comparison between the three studied groups as		
22	regard ALT level:	109	
23	Comparison between the three studied groups as	110	
23	regard Albumin level:	110	
24	Comparison between the three studied groups as	111	
	regard prothrombin time level:		
25	Comparison between the three studied groups as	112	
	regard INR level Comparison between the three studied groups as		
26	regard total leucocytic count	113	
	Comparison between the three studied groups as		
27	regard Haemoglobin level	114	
28	Comparison between the three studied groups as	115	
20	regard platelet count	113	
	Comparison between the three studied groups as		
29	regard serum Ornithine Carbamoyle Transferase	117	
	(OCT)		
30	Comparison between the three studied groups as	118	
	regard Ammonia level Relation between the three studied groups as		
31	regard relation to serum OCT and other variants	119	
	Relation between the three studied groups as		
32	regard relation of serum Ammonia and other	121	
	variants		
33	ROC curve between group I and group II+III as	123	
	regard NH3	123	
34	ROC curve between group I and group II+III as	125	
	regard OCT		
35	Correlations between the three studied groups	107	
	as regard relation of serum Ammonia, serumOCT and other laboratory variants	127	
	and other factoratory variables		

LIST OF FIGURES

Fig. No.	Title	Page No.			
	Figures of the review:				
1	Capsule endoscopy.	17			
2	MRI of a patient's brain with hepatic encephalopathy	35			
3	Brain cells called astrocytes from a 51 years old alcoholic patient with cirrhosis who died in a coma (HE).	36			
4	Interorgan ammonia metabolism in health and cirrhosis	61			
5	The urea cycle and its principal enzymes.	74			
6	OCT gene location	77			
	Figures of the results:				
7	show comparison between the studied groups according to sex.	100			
8	comparison between the studied groups according to age	101			
9	Comparison between the studied groups as regard clinical symptoms:	102			
10	Comparison between the studied groups as regard clinical signs.	103			
11	Comparison between the studied groups as regard ultra sonographic findings.	104			
12	Comparison between the three studied groups as regard urea as a renal function test.	105			
13	Comparison between the three studied groups as regard creatinine as a renal function test.	106			
14	Comparison between the three studied groups as regard total bilirubin level.	107			
15	Comparison between the three studied groups as regard direct bilirubin level.	108			
16	Comparison between the three studied groups as regard AST level.	109			
17	Comparison between the three studied groups as regard ALT level.	110			
18	Comparison between the three studied groups as regard Albumin level.	111			

19	Comparison between the three studied groups as regard prothrombin time level.	112
20	Comparison between the three groups as regard INR	113
21	Comparison between the three groups as regard white blood cell count	114
22	Comparison between the three studied groups as regard Haemoglobin level.	115
23	Comparison between the three studied groups as regard platelet count.	116
24	Comparison between the three groups as regard OCT level	117
25	Comparison between the three groups as regard ammonia (NH3)	118
26	Sensitivity and specificity of ammonia level as a predictor of hepatic encephalopathy	123
27	Cut off value of serum ammonia level for prediction of hepatic encephalopathy.	124
28	Sensitivity and specificity of OCT level as a predictor of hepatic encephalopathy.	125
29	Cut off value of serum OCT level for prediction of hepatic encephalopathy.	126
30	Correlation between OCT and direct and total bilirubin	128
31	Correlation between OCT and liver enzymes(ALT and AST).	128
32	Correlation between OCT and Prothrombin Time and Platelet.	128
33	Correlation between OCT and INR and Albumin.	129
34	Correlation between Ammonia and direct and total bilirubin.	129
35	Correlation between Ammonia and INR and Prothrombin time.	129
36	Correlation between NH3 and liver enzymes(ALT and AST).	130
37	Correlation between NH3 and platelet count and Albumin.	130
38	Correlation between Ammonia and OCT.	130

INRTODUCTION

Hepatic encephalopathy (HE) may be defined as a disturbance of the central nervous system (CNS) function secondary to porto –systemic shunting. It represents a wide spectrum of neuropsychiatric abnormalities seen in patients with liver dysfunction after exclusion of other known neurological diseases. (Ayman, 2010).

The main consequence of decreased liver function is failure of ammonia detoxification. Hyperammonemia seems to be the chief culprit in patients with HE. Ammonia can affect central nervous system function directly as neurotoxic agent and indirectly due to several mechanisms. (*Nikolaos*, et al., 2010).

Astrocytes are the only cells in the brain that can metabolize ammonia. The enzyme glutamine synthetase (present in the endoplasmic reticulum of astrocytes) is responsible for the conversion of equimolar concentrations of glutamate and ammonia to glutamine. (*Olde ,et al.,2009*).

Intracellular levels of glutamine, therefore, increase enormously as the ambient ammonia concentrations rise owing to liver failure, as glutamine is an osmolyte, water moves inside the astrocyte causing it to swell. This swelling leads to cerebral edema and intracranial hypertension.(*Haussinger*, et al., 2000)

Ornithine carbamoyltransferase is expressed almost exclusively in hepatocellular mitochondria and regarded as a liver-specific marker. The serum level of this enzyme was shown to be increased in patients with hepatic disorders including hepatitis, cirrhosis and cancer. (*Hiroshi*, et al., 2006).