ISOLATION AND IDENTIFICATION SOME FOOD-BORN VIRUSES

By

NAGLAA ABOZIED SEIF EL-ALFY

B.Sc. (Open Education Center), Fac. of Agriculture, Ain Shams Univ. (2009)

A thesis submitted in partial fulfillment of The Requirements for the Degree of

MASTER OF SCIENCES

in Agriculture Science (Agricultural Viruses)

Department of Microbiology Faculty of Agriculture Ain Shams University

Approval Sheet

ISOLATION AND IDENTIFICATION SOME FOOD-BORN VIRUSES

By

NAGLAA ABOZIED SEIF EL-ALFY

B.Sc. (Open Education Center), Fac. of Agriculture, Ain Shams Univ. (2009)

This thesis for M.Sc. degree has been approved by:

Dr. Sahar Ahmed Hafez Shoman
Prof. of Virology, Fac. of Science, Ain Shams University

Dr. Abd Allh Mohamed El Ahdel
Prof. Emeritus of Agric. Virology, Fac. of Agric., Ain Shams University

Dr. Khalid Abd El-Fattah El-Dougdoug
Prof. Emeritus of Agric. Virology, Fac. of Agric., Ain Shams University

Dr. Badawi Abd El-Salam Othman

Prof. Emeritus of Agric. Virology, Fac. of Agric., Ain Shams
University

Date of Examination: / / 2016

ISOLATION AND IDENTIFICATION SOME FOOD-BORN VIRUSES

By

NAGLAA ABOZIED SEIF EL-ALFY

B.Sc. (Open Education Center), Fac. of Agriculture, Ain Shams Univ. (2009)

Under the supervision of:

Dr. Badawi Abd El-Salam Othman

Prof. Emeritus of Agric. Virology, Agric. Microbiol. Dept., Fac. of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Khalid Abd El-Fattah El-Dougdoug

Prof. Emeritus of Agric. Virology, Agric. Microbiol. Dept., Fac. of Agriculture, Ain Shams University.

Dr. Ali Fahmy Mohamed

Head Research, Holding Company for Biological Product and Vaccines (VACSERA).

ABSTRACT

Naglaa Abozied Seif EL-Alfy: Isolation and Identification of some Food-borne Viruses. Unpublished M. Sc. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, 2016.

In recent years it has been recognized that viruses are an important cause of food-borne disease, viruses do not grow or multiply in or on foods, but foods may become contaminated with human viruses and transmit infection. Five samples from drainage water were collected from El-Rahawy (Giza); Sabal (El menofiya); Tala (Gharbiya); Baher El-baker (Port Saied) and El- Manzalla (Dagahliah), in addition to fifteen samples from vegetables (Lettuce, watercress and green onion) obtained from the sites of drainage water, and twenty clinical stool samples obtained from ill childrens, Razi mokattam in greater Cairo and Abo El-Reish Hospital, Cairo, Egypt. The samples were extracted and concentrated for Rotavirus and Enterovirus detection by molecular, serological and biological methods. The Rotaviruses assayed were qualitatively quantitatively by (Real time PCR) in concentrated drainage water and it was detected in Baher El-baker and El- Manzalla but not detect in drainage water of Sabal, Tala and El-Rahawy. It was also detected in concentrated extract of vegetables and two clinical stool samples. The Enteroviruses were assayed qualitatively and quantitatively by (Real time PCR) in concentrated drainage water and it was found in Tala and El-Rahawy but not detected in drainage water of Sabal, Baher Elbaker and El- Manzalla, as well as it was detected in concentrated extracts of vegetables.

On the other hand concentrated extracts of vegetable samples and drainage water samples which gave negative results with ELISA and Rapid chromatographic Immunoassay card (RCIC) tests. But the concentrated clinical stool samples gave positive results with RCIC Naglaa A. Seif, (2016), M.Sc. Fac. of Agric., Ain shams Univ.

except eight samples. So, all negative samples were inoculated on Vero, Caco-2 and HEp-2 cell line for propagation of Rotavirus and Enterovirus and assayed again using ELISA and RCIC tests for Rotavirus and Enterovirus antigen detection in propagated samples. It was found that, the water samples and clinical stool samples gave positive results with RCIC test while the extracts of vegetables crops gave positive result with ELISA tests. The isolated Rotavirus and Enterovirus on cell lines were identified depending on some biological properties. It was found that, the titer of Rotavirus and Enterovirus particles estimated by plaque assay on Caco-2 and HEp-2 cells were (9.5×10^6) and (1.2×10^4) PFU/ml respectively. The viruses caused also death of survival cells, round cells and giant cells. Electron microscope showed that, Rotavirus and Enterovirus particles are clarified from infected cell culture have naked, spherical with Icosahedra symmetry. The amplification products of vp6 gene of Rotavirus using conventional RT-PCR was in expected size 231 bp and the amplification products of vplgene of Enterovirus using conventional RT-PCR was in expected size 242bp.

The action sequence of nucleotides molecular genetics vp6 and vp1 rotavirus and Enterovirus using DNA Sequencer. As has been the work of an analysis of the sequences through Bio Informatics using specialized programs. The work of the similarity for sequences of Enterovirus and Rotavirus Egyptian isolate between isolates recorded in the gene bank and the percentage of similarity using phylogenetic tree. Based on MSA analysis, the phylogenetic tree was performed and shows four clusters in which the Egy.

Key Words.

Rotavirus, Enterovirus, Drainage water, Food-borne viruses, RT-PCR, rt-RT-PCR, cell line, Electron microscope, Haematoxylin and Eosin stain, ELISA,

Naglaa A. Seif, (2016), M.Sc. Fac. of Agric., Ain shams Univ.

Rapid chromatographic Immunoassay card, sequencing, alignment, phylogenetic tree.

ACKNOWLEDGMENT

My sincerest gratitude is due to Allah, who provided me with the blessings and health to finish this thesis. He encompassed me with His mercy and guidance in every step on the way.

I would like to express my dearest gratefulness to my supervisor Prof. Dr. Badawi A. Othman, Professor Emeritus of Virology, Dept. of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for his supervision, continuous guidance, and kindness and also for his faith in my research and his confidence in me as a person. His truly scientist nature was a continuous source of inspiration for me during the work and provided me with all the encouragement and support I needed throughout my thesis.

My deepest gratitude and sincere thanks to Prof. Dr. Khalid Abd El-Fattah El-Dougdoug, Professor Emeritus of Virology, Dept. of Agric. Microbiology, Faculty of Agriculture, Ain Shams University, for his efforts and valuable assistance to follow up the progress of this work with his continuous guidance during his supervision.

I'm greatly indebted to express my special thanks and great appreciation to Prof. Dr. Ali Fahmy Mohamed, Professor in General Director of Applied Research of the Holding Company for Biological Product and Vaccines (VACSERA), for his efforts and valuable assistance to follow up the progress of this work with his continuous guidance during his supervision.

I'm greatly indebted to express my special thanks and great appreciation to Dr. Mohamed Ibrahim Hasan Azzam, Central Laboratory for Environmental Quality Monitoring "CLEQM", National Water Research Center "NWRC", for constant support and unlimited helping.

I would like to express my great appreciation to all staff members of the Dept. of Agric. Microbiol., Fac. of Agric., Ain Shams Univ. for their help and cooperation during the investigation.

At last, but never the least, a very heartfelt gratitude goes to my Family and my colleagues for their cooperation and kind encouragement during my study.

CONTENTS

Subject	Page
LIST OF TABLES	IV
LIST OF FIGURES.	VI
LIST OF ABBREVIATIONS	VIII
I.INTRODUCTION	1
II. REVIEW OF LITERATURE	5
III. MATERIALS AND METHODS	47
1. MATERIALS	47
1. BUFFERS USED IN PRIMARY THE CONCENTRATION OF THE	
ENVIRONMENTAL	47
SAMPLES	4/
2.Buffers used in the Secondary concentration of	
ENVIRONMENTAL SAMPLES BY ORGANIC FLOCCULATION	47
METHOD	4/
3. BUFFERS USED IN THE CONCENTRATION OF STOOL SAMPLES	47
4. Buffer used For Gel	48
ELECTROPHORESIS	40
5.Reagent and solution of tissue	48
CULTURE	40
6.REAGENT OF HEAMATOXYLINAND EOSIN	52
STAINING	32
2. METHODS	53
1. Collection of samples	47
1.1. water samples	53
1.2. Vegetables samples	53
1.3. Clinical samples	53
2.Concentration of samples	54

Subject	Page
2. 1. water samples	5 4
2.1.1. Primary	54
concentration	54
2.1.2. Secondary concentration by using organic flocculation	
method	54
2.2. Raw vegetable samples	54
2.2.1. Primary concentration	54
2.2.2. Secondary concentration	55
2.3. Clinical samples	55
2.3.1. Preparation of clinical samples	55
3.Molecular detection of Rotavirus and Enterovirus	55
3.1. Extraction of total viral RNA	55
3.2. Molecular detection of Enterovirus	56
3.2.1. Designed of primers of Enterovirus	56
3.2.2. RT-PCR of a fragment of the Enterovirus	56
3.2.3. Agarose gel Electrophoresis	56
3.2. 4. Real-time-qRT-PCR of Enterovirus	57
3.2.5. Oligonucleotide primers and TaqMan® probe for virus -	
detection by rt-qRT PC	57
A-Setting up the Mx3005Pro software as following	58
- Plate Setup	58
-Thermal profile setup	58
- Cycles	58
B-Analysis of Peaks behavior	58
C-Standard curve	59
D-Result calculation using standard curve	59

Subject	Page
quantification	
3.3.Molecular detection of Rotavirus	61
3.3.1. Designed of primers of Rotaviruses	61
3.3.2.RT-PCR of the <i>VP6</i> gene	61
3.3.3.Agarose gel Electrophoresis	61
3.3.4.Quantitation of Rotavirus by using Real time RT-PCR	61
3.3.5. Generation of standard curves	62
3.4.DNA sequencing	63
4.Serolegecal detection of Rotavirus and Enterovirus	64
4.1.Rapid chromatographic Immunoassay tests (Immuno Card)	64
4.1.1.Rotavirus Antigen Rapid Test (Cassette) kit (CORTEZ. One step	
rotavirus antigen RapiCardInstaTest California a1302 USA eat	
176666-1)	64
4.1.2. Enterovirus MonlabTestR Antigen Rapid Test (Cassette)	
kit	65
4.2.Enzyme-Linked Immunosorbent Assay (ELISA)	65
4.2.1.Detection of Rotavirus by ELISA	65
4.2.2. Detection of Enterovirus by ELISA	66
5.Characterization of Rotavirus and Enterovirus	67
5.1.Viral materials	67
5.2. Maintenance of cells:	67
5.2.1.Maintenance of Vero cells	67
5.2.2.Maintenance of Caco-2 cells	68
5.2.3.Maintenance of HEp2 cell	68
5.3. Determine of cell suspension concentration	68
5.4.Preservation cell line	69
5.5. Preparation of virus seed was done as follow	69
5.6. Micro titration of Enterovirus and Rotavirus	70

Subject	Page
5.7.plaque assay of Enterovirus and Rotavirus	71
5.8.Hematoxylin and Eosin staining	72
6.Morphology of Rotavirus and Enterovirus	72
IV. RESULTS	73
V. DISCUSSION.	119
VI. SUMMARY	135
VII. REFERENCES.	140
ARABIC SUMMARY	

LIST OF TABLES

Table No.	Page
1. Classification of human	21
Enteroviruses	7 0
2. Standard curve dilution of Enterovirus	59
3. Standard curve dilution of Rotavirus	63
4. Detection of Rotavirus and Enterovirus in concentrated	
drainage water samples by real time RT-PCR	74
5. Detection of Rotavirus and Enterovirus in concentrated	
washed vegetables in drainage water samples by real time RT-PCR	78
6. Detection of Rotavirus in concentrated clinical stool samples	
by real time RT-PCR	81
7. Detection of Rotaviruses concentrated stool samples	
before propagation by Rapid Test (Rapid chromatography Immunoassay for the detection of antigen-ImmunoCard)	84
8. Propagation of Rotavirus and Enterovirus of concentrated drainage water samples on cell line	86
9. Propagation of Rotavirus and Enterovirus	
concentrated from washed vegetables in drainage water in cell line	88
10.Titration of propagated RV and EV of	00
concentrated drainage water on cell	89

line	
11. Titration (PFU/ml) of propagated EV concentrated from washed vegetables in EL-Rahway and Tala of Drainage water	91
12. Titration (PFU/ml) of propagated RV concentrated from washed vegetables in Bahar EL-Baker and EL-Manzala of drainage water.	
of drainage water	91
13. Titration of propagated Rotavirus of stool samples on	
Caco-2 cell on cell line	92
14. Detection of propagated Rotavirus and Enterovirus in concentrated Drainage water and concentrated vegetables extracts samples by Rapid Test (RCIC)	95
15. Detection of propagated Rotavirus and Enterovirus of concentrated vegetables extracts samples by ELISA Test	95
16. Plaque assay of Rotavirus and Enterovirus on monolayer	
cells line agarose over layer	98
17. Cytopathic effect of Rotavirus and Enterovirus on cell line	100
18. Effect of RV and EV on infected cell line and cell	
suspension as no of staining survival cells	104

LIST OF FIGURES

Fig. No.	Page
1. Rotavirus virion, according to ViralZone 2011	16
2. Genome of RV according to ViralZone 2013	17
3. The rotavirus replication cycle.(Hu,2012)	19
4. Virion of Enterovirus according to ViralZone 2008	25
5. Genome of EV according to ViralZone 2008	26
6. Replication of Enterovirus	27
7. A Photographe of standard curve of Enterovirus by real-time-qrt-PCR	60
8. A Photographe of standard curve of Rotavirus by real-time-qrt-PCR	63
9. A photographe of Enterovirus amplification profill for concentrated drainage water by rt-RT-PCR10. A photographe of Rotavirus amplification profile for	75
concentrated drainage water by rt-RT-PCR	76
11. A photographe of Enterovirus amplification profile for concentrated vegetables washed in drainage water by rt-RT-PCR	79
12. A photographe of Rotavirus amplification profile for concentrated vegetables washed	