

### HYDROGEOLOGIC AND HYDRODYNAMIC ASSESSMENT OF NUBIA AQUIFER AND IMPACTS ON OIL POTENTIALITY IN ALAMEIN AREA ,NORTH WESTERN DESERT,EGYPT

Thesis Submitted for the Degree of Ph.D. in Geology (Hydrogeology)

# BY WAEL AHMED SHUKRY

(B. Sc. in Geology, Ain Shams University, 1984)

(M. Sc. in Geology/Hydrogeology, Ain Shams University, 2009)

 $T_0$ 

**Ain Shams University Faculty of Science** 

**Geology Department** 

#### **SUPERVISORS:**

Prof.Dr. Ezzat Ali Korany Emeritus Prof. Hydrogeology Geology Dept. Faculty of Science Ain Shams University Dr. Samir Mohamed M. Raslan Assistant General Manager for Exploration Pharaonic Petroleum Company

Cairo, Egypt, 2015



#### APPROVAL SHEET

# HYDROGEOLOGIC AND HYDRODYNAMIC ASSESSMENT OF NUBIA AQUIFER AND IMPACTS ON OIL POTENTIALITY IN ALAMEIN AREA ,NORTH WESTERN DESERT,EGYPT

Thesis for the Degree of Ph.D. in Geology (Hydrogeology)

# BY WAEL AHMED SHUKRY

(B. Sc. in Geology, Ain Shams University, 1984)

(M. Sc. in Geology/Hydrogeology, Ain Shams University, 2009)

To

**Ain Shams University Faculty of Science** 

**Geology Department** 

#### **SUPERVISORS:**

Emeritus Prof.Dr. Ezzat Ali Korany Geology Department, Faculty of Science, Ain Shams University Dr. Samir Mohamed Raslan Assistant General Manager for Exploration Pharaonic Petroleum Company

Head of geology Department



## **NOTE**

Name of Student: Wael Ahmed Shukry Mohamed Radwan

Degree requirements: Ph.D. in Geology (Hydrogeology)

**Department: Geology** 

**Faculty: Science** 

**University: Ain Shams** 

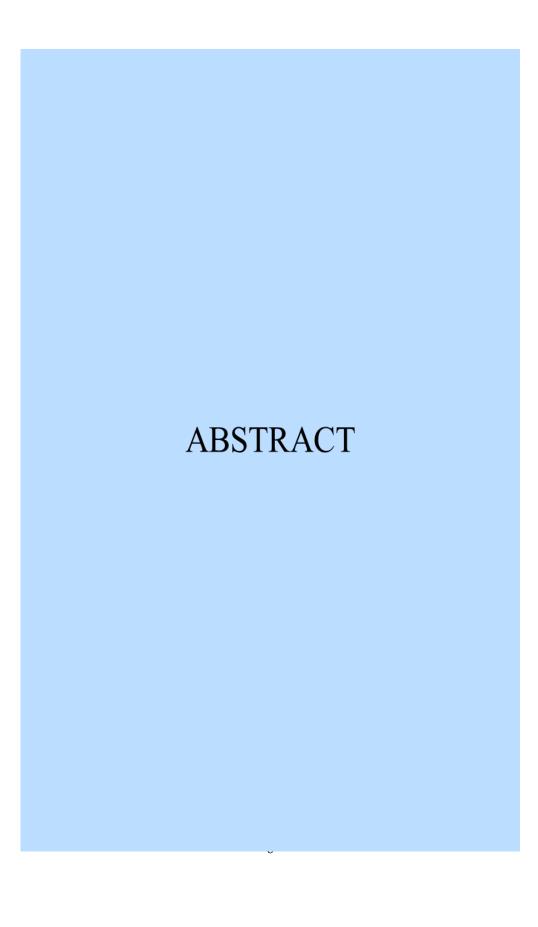
**Graduate Year: 1984** 

M.SC. Awarded: 2009

Head of Department: Prof.Dr. Yasser Al Safory



#### **ACKNOWLEDGEMENTS**


I am deeply thankful to Allah for granting me health and patience to complete this thesis

The author wishes to express his thanks and gratitude to **Prof. Dr. Ezzat Ali Korany**, professor of hydrogeology, Faculty of Science, Ain shams University and **Dr. Samir Mohamed Raslan**, Geology Department Head of Pharaonic Petroleum Company, Egypt for their valuable guidance, fruitful supervision and discussions during the preparation of this work, as well as for their critical reading of the manuscript.

Thanks are expressed to my colleagues in E.C.S (Electronic Construction Service Company) and El Hamra and Borg El Arab companies and many thanks for the Egyptian General Petroleum Corporation (E.G.P.C) and Information Petroleum Center to provide the required data.

Special gratitude is due to my Father and my Mother, for their encouragement and help during the progress of the present work.

Special thanks to my family, daughters and Special gratitude is due to my wife for their encouragement and giving me the time during the program of the work. Thanks for every one help in this study.



#### **ABSTRACT**

The hydrocarbon occurrences in the Western Desert are closely linked with the tectonic, the stratigraphic history of the area and the hydrodynamic potential of the groundwater in the regional Nubia Sandstone Aquifer System in the Western Desert and in the local Nubia Sandstone Aquifer System in the Northern section of the Western Desert. The north of Western Desert province has a significant hydrocarbon potential as recent oil and gas discoveries.

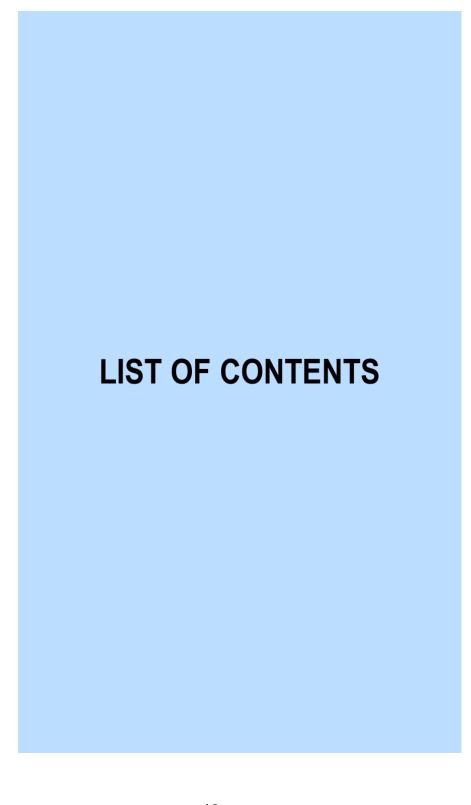
The present work aims to identify the systems of flow dynamics and hydrogeochemistry of the groundwater, which encountered in the North Western Desert as well as geologic setting, the reservoir characteristics and formation processes. The hydrogeochemistry of the groundwater (formation water) represents one of the main topics aiming to understand the connate groundwater behavior in relation to oil, as the base for further investigations.

The flow systems and the hydrogeochemical regime of the groundwater in the Nubia Sandstone Aquifer in the regional and local systems in the Western Desert of Egypt have a great impacts on the generation, migration and accumulations processes of the hydrocarbons.

The development of oil traps in the North Western Desert depends mainly upon structures. They are highly controlled by the potential of the hydrodynamic conditions of the groundwater flow system in both the regional and local flow systems of the Nubia Sandstone Aquifer.

Flow trends of groundwater match with the trends of salinity variations. They flow from NE and NW towards the Qattara Depression. Opposite trends were developed due to uplift structers and exerting discharge areas favorable for oil accumulation. The Qattara Depression represents the great discharge area in the North Western Desert of Egypt.

The aquifer framework of North Western Desert is classified into two main aquifer systems, the Post Nubia Aquifer System along the Mediterranean and assigned to Late Tertiary ,Lower Miocene (Moghra Formation) and Quaternary the Nubia Sandstone Aquifer system which assigned to the Jurassic - Upper Cretaceous time (Khatatba, Alam El Bueib, Kharita and Bahariya Formations). The Nubia Sandstone Aquifer is built of multilayered system.


The hydrodynamic concept through the pressure –depth curves and cross sections in the North Western Desert along different reservoirs are investigated. The Middle and Lower Cretaceous Reservoirs (Bahariya, Kharita, Alamein and Alam El Bueib Formations) and Jurassic Reservoir (Khatatba Formation) are described. The potentiometric surfaces as based on groundwater heads are compiled. The hydraulic gradients of groundwater match with the trends of salinity variations.

Fourteen formation water samples were collected from three oil fields (Alamein, Yidema and Horus fields) they are collected from ten oil wells penetrating aquifers and different pay zones. They are selected to represent the hydrocarbon pay zones belonging to different geological times, and chemically analyzed. Variation of salinity and hydrogeochemical characteristics of the connate groundwater are investigated. They match the flow trends reflecting the hydrodynamic potentials in the Nubia Sandstone Aquifer System.

The salinity has a trend of increase northward forming a fresh /salt water boundary coinciding with the Qattara Depression. It divides the Western Desert into a northern area with salt water, low bacterial degradation and active oil generation and southern area with fresh water and high bacterial degradation with active water flushing and non-active oil generation. The permeability barrier between the Latitudes 29° and 30° N as a result of Jurassic orogeny is expected to prevent the fresh water flushing toward the North.

The groundwaters (formation water) in the multilayered Nubia Aquifer System in the North Western Desert have a marine water origin and act as active hydrodynamics zone. It reflects a favorable zone for hydrocarbon accumulation.

The hydrodynamic conditions of the Nubia Sandstone Aquifer System have great effect on the occurrence and distribution of oil accumulations in the North Western Desert. The oil possibilities in the North Western Desert and the best locations for oil potentiality exist around Abu Gharadig and Shushan- Matruh Basins.



## LIST OF CONTENTS

| Title                                                                   | Page     |
|-------------------------------------------------------------------------|----------|
| CHAPTER (I)                                                             | 1        |
| INTRODUCTION                                                            | 1        |
| GENERAL OUT LINES                                                       | 1        |
| PROBLEM FORMULATION                                                     | 1        |
| SCOPE AND TARGETS                                                       | 3        |
| MATERIAL AND METHODS                                                    | 3        |
| REVIEW OF PREVIOUS WORKS                                                | 5        |
| MANUSCRIPT OUTLINES                                                     | 12       |
| CHAPTER (II)                                                            | 14       |
| GEOLOGIC SETTING OF THE NORTH WESTERN DESERT OF EGYPT GENERAL OUT LINES | 14<br>14 |
| 1-LITHO-STRATIGRAPHIC SUCCESSION OF THE NORTH                           | 16       |
| WESTERN DESERT                                                          |          |
| Nubia Sequence                                                          | 21       |
| 1-Paleozoic clastic sequence                                            | 21       |
| 2-Mesozoic clastic sequence (Triassic-Cenomanian)                       | 22       |
| Post Nubia sequence                                                     | 27       |
| 1-Tertiary Carbonate sequence (Turonian – Eocene)                       | 27       |
| 2-Quaternary Clastic sequence (Oligocene – Recent)                      | 30       |
| 2- STRUCTURAL FRAMWORK OF THE NORTH WESTERN DESERT                      | 31       |
| 3- TECTONIC EVENTS OF THE NORTH WESTERN DESERT                          | 33       |
| 4- SEDIMENTARY BASINS AND RESERVOIR FACIES                              | 40       |
| DISTRBUTION IN THE NORTH WESTERN DESERT                                 |          |
| A) Northern Basins                                                      |          |
| Matruh Basin                                                            | 40       |

| Shushan Basin                                                                                                                                             | 40 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Natrun Basin                                                                                                                                              | 41 |
| Alamein Basin (Dahab-Mireir)                                                                                                                              | 42 |
| B) Southern Basins                                                                                                                                        | 45 |
| Abu Gharadig Basin                                                                                                                                        | 46 |
| Ghazalat Basin                                                                                                                                            | 46 |
| El Gindi Basin                                                                                                                                            |    |
| (II) Reservoir facies distribution                                                                                                                        | 50 |
| a) Bahariya Sandstone Formation (Upper Cretaceous):                                                                                                       | 51 |
| B) Kharita Sandstone Formation (Early Cretaceous)                                                                                                         | 54 |
| c) Alamein Dolomite Formation (Early Cretaceous)                                                                                                          | 55 |
| d) Alam El Bueib Sand Formation (Early Cretaceous)                                                                                                        | 55 |
| e) Khatatba Sand Formation (Jurassic Age)                                                                                                                 | 57 |
| 5-STRATIGRAPHIC AND GENETIC CLASSIFICATION                                                                                                                | 59 |
| CHAPTER (III)                                                                                                                                             | 61 |
| GROUNDWATER FLOW AND HYDROGEOCHEMICAL SYSTEMS IN THE POST NUBIA AND NUBIA SANDSTONE AQUIFER SYSTEMS IN THE NORTH WESTERN DESERT OF EGYPT General Outlines | 61 |
| 1- REGIONAL FLOW SYSTEMS IN THE NORTH WESTERN                                                                                                             | 63 |
| DESERT                                                                                                                                                    |    |
| 2- LOCAL FLOW SYSTEM IN THE NORTH WESTERN DESERT                                                                                                          | 69 |
| Post Nubia Miocene Aquifer System-Local groundwater flow                                                                                                  |    |
| system                                                                                                                                                    | 71 |
| Nubia Aquifer System-Local flow systems                                                                                                                   | 76 |
| Local groundwater flow system for Upper Cretaceous -Bahariya                                                                                              | 77 |
| Formation Aquifer system                                                                                                                                  |    |
| Local groundwater flow system for Lower Cretaceous Aquifer                                                                                                | 83 |
| (Alam El Bueib Formation)                                                                                                                                 |    |
| Local groundwater flow system for Jurassic Aquifer                                                                                                        |    |

|                                                                | 87  |
|----------------------------------------------------------------|-----|
| 3-HYDRODYNAMIC CONDITIONS AND YDROGEOCHEMICAL                  | 91  |
| CHARACTRSTIC IN THE NORTH WESTERN DESERT                       |     |
| SALINITY VARIATIONS AND FLOW TRENDS                            | 91  |
| Groundwater Salinity trends for Upper Cretaceous Aquifer       |     |
| (Bahariya Formation)                                           | 92  |
| Groundwater salinity trends for Lower Cretaceous Aquifer (Alam |     |
| El Bueib Formation                                             | 96  |
| Groundwater Salinity trends for Jurassic Aquifer (Kharita      |     |
| Formation)                                                     | 102 |
| 4. HYDROGEOCHEMICAL SYSTEMS OF FORMATION WATER                 | 107 |
| 4.1 GEOCHEMICAL ANALYSIS OF FORMATION WATERS IN THE            |     |
| NORTH WESTERN DESERT                                           | 107 |
| The salinity and total dissolved solids (T.D.S)                | 113 |
| Major ions concentrations                                      | 118 |
| HCO <sub>3</sub> concentration of the formation groundwaters   | 119 |
| The groundwater resistivity and specific gravity               | 119 |
| The Aquifer oil gravity variations of the groundwaters         | 119 |
| The groundwater alkalinity (pH)                                | 121 |
| Water chemical type                                            | 123 |
| Hydrochemical Parameters of the groundwater                    | 125 |
| Hypothetical Salt Combination                                  | 128 |
| Hydrochemical Classification                                   | 130 |
| Depth Related Change                                           | 137 |
| Conclusion –Hydrogeochemical characteristics                   | 140 |
| 5- INVESTIGATED HYDRODYNAMIC CONDITIONS IN THE                 |     |
| NUBIA SANDSTONE AND POST NUBIA AQUIFERS IN THE                 |     |
| NORTH WESTERN DESERT                                           | 142 |

| Nubia Sandstone Aquifer Hydrodynamic conditions                                                  | 142        |
|--------------------------------------------------------------------------------------------------|------------|
| Nubia Sandstone Aquifer System Hydrodynamic Conditions and                                       | 143        |
| Relationship                                                                                     |            |
| Nubia Sandstone Aquifer Hydrochemical Character                                                  | 144        |
| Post Nubia Sandstone Aquifer System Hydrodynamic Conditions                                      |            |
| and Relationship                                                                                 | 149        |
| CHAPTER (IV)                                                                                     |            |
| MIGRATION AND ACCUMULATION OF HYDROCARBONS IN THE NORTH WESTERN DESERT OF EGYPT General Outlines | 150<br>150 |
| 4.1 HYDRODYNAMIC PROCESSES OF MIGRATION AND                                                      | 151        |
| CONDITIONS                                                                                       |            |
| Organic Richness                                                                                 | 151        |
| Kerogen Type                                                                                     | 153        |
| Thermal Maturity                                                                                 | 153        |
| Hydrocarbon Migration Pathways In The North Western Desert                                       | 156        |
| 4.2HYDRODYNAMIC CONDITIONS FOR ACCUMULATIONS                                                     |            |
| PRESSURE VARIATIONS AND FLOW SYSTEMS OF THE OIL                                                  | 160        |
| PAY ZONES IN THE NORTHERN WESTERN DESERT                                                         | 161        |
| Source of formation pressure data                                                                | 161        |
| Nature of fluids                                                                                 | 162        |
| Trap concept                                                                                     | 162        |
| Pressure gradient                                                                                | 162        |
| Application                                                                                      | 166        |
| Pressure-gradient model along Upper Cretaceous (Bahariya                                         | 100        |
| Formation) reservoir                                                                             | 166        |
| Pressure-gradient model along Lower Cretaceous (Alam El                                          | 100        |
| Bueib) Reservoir                                                                                 | 172        |
| Pressure-gradient model along Jurassic Reservoir                                                 | 1/4        |

| <b>Entrapment under Hydrodynamic Conditions</b>              | <b>17</b> 4 |
|--------------------------------------------------------------|-------------|
| Fresh water Salt water under Hydrodynamic Conditions         | 176         |
| Gas Oil and Water System under Hydrodynamic Condition        | 176         |
| Hydrodynamic Conditions and Processes of Alamein Basin       | 176         |
| Hydrocarbon for Accumulations and Entrapment                 | 178         |
| Hydrodynamic Conditions and Processes of North Bahariya area | 178         |
| Hydrocarbon Accumulations and Entrapment                     | 181         |
| Hydrodynamic Conditions and Processes of Abu Gharadig Basin  | 181         |
| Hydrocarbon for Accumulations and Entrapment                 | 184         |
| 4.3 IMPLICATIONS FOR PETROLEUM EXPLORATION IN                | 184         |
| NORTH WESTERN DESERT                                         | 188         |
| SUMMARY AND CONCLUSION                                       | 200         |
|                                                              | 208         |
| REFERENCES                                                   |             |