OCT of Retinal and Choroidal Tumors

Essay

Submitted for partial fulfillment of the master degree of **the Master degree in Ophthalmology**

By:

Sara Sadek Ali Ahmed Zordok

(M. B., B.Ch)

Supervised by

Prof. Dr. Sherif Nabil Embabi

Professor of Ophthalmology Faculty of Medicine, Ain Shams University

Dr. Mohammed Moghazy Mahgoub

Assistant Professor of Ophthalmology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Contents

Page
List of Abbreviations i
List of Tables iii
List of Figures iv
Introduction
Aim of the Essay
Basics of OCT in ocular imaging
Enhanced depth imaging optical coherence tomography . 12
Swept source optical coherence tomography
Optical coherence tomography of retinal tumors 39
Optical coherence tomography of choroidal tumors 61
Summary
Conclusion & current role of OCT in clinical practice 95
References
Arabic Summary

List of Abbreviations

CC : Chorio-Capillaris

CCD : Charge-coupled device

CCH : Circumscribed choroidal hemangiomas

CHRPE : Congenital hypertrophy of the retinal

pigment epithelium

CSC : Central serous choriodopathy

CV : Choroidal volume

EDI : Enhanced depth imaging

OCT : Optical Coherence Tomography

ONH : Optic nerve head

PCA : Posterior ciliary artery

PED : Pigment epithelial detachment

PS-OCT : Polarization sensitive optical coherence

tomography

ROP : Retinopathy of prematurity
RPE : Retinal pigment epithelium

SD-OCT : Spectral Domain Optical Coherence

Tomography

SNR : Signal-to-noise ratio

SS-OCT : Swept Source Optical Coherence

Tomography

TD : Time Domain

VCSEL : Vertical cavity surface-emitting laser

VHL : Von Hippel-Lindau Syndrome

List of Abbreviations(Cont.)

EDI-OCT: Enhanced Depth Optical Coherence Tomography

NFL :Nerve Fiber Layer
GCL :Ganglion Cell Layer
IPL :Inner Plexiform Layer
OPL :Outer Plexiform Layer
ONL :Outer Nuclear Layer

ELM :External Limiting Membrane

IS/OS :Inner Segment / Outer Segment

CSJ :Choroido-Scleral Junction

SCL :Sclero-Choroidal Line

VCT :Vascular Connective Tissue StCT :Stromal Connective Tissue

CT :Choroidal Thickness

TCT :Total Choroidal Thickness

FDML :Fourier Domain Mode Locking

ICGA :Indo Cyanine Green AngiographyMEMS :Micro-Electro-Mechanical System

SL :Sattler's Layer HL :Haller's Layer

UBM :Utra-Sonography Biomicroscopy

List of Tables

Table	Title	Page
1	Comparison of Time Domain OCT,	29
	Spectral Domain OCT and Swept Source	
	OCT Devices	
2	Patients' Demographics and Choroidal	33
	Thickness	
3	OCT Findings in Retinal Neoplasms	60
4	EDI-OCT Findings of Neoplasms	90

List of Figures

Fig.	Title	Page
1	Human retinal images using (A) a spectrometer-based spectral domain optical coherence tomography and (B) time domain optical coherence tomography.	9
2	Spectral-domain optical coherence tomography image from the macula of a normal eye.	10
3	Normal appearance of the retina and choroid at the same location as imaged with (A) conventional protocol versus (B) enhanced depth imaging optical coherence tomography (EDI-OCT).	13
4	Horizontal EDI OCT choroidal line scan through the fovea.	13
5	Optical coherence tomography obtained using Cirrus high definition OCT (HD-OCT) system (a) A single B-scan (b) Five B-scans averaged together (c) Twenty B-scans averaged together.	14
6	Enhanced depth imaging scans through the same location across the fovea	15
7	Manual measurements of choroidal thickness at each 1, 000-μm interval, centered on the fovea.	16
8	(a) EDI-OCT image in the macular region of the human eye (b) The Bruch's Membrane and the choroidal-scleral interface are manually labeled by the ophthalmologists.	21
9	Different Appearances of the Choroid-Scleral Junction in Healthy Participants.	23

Fig.	Title	Page
10	Comparison of different choroid-visualizing OCT systems. EDI-OCT (top). SS-OCT (bottom).	25
11	Swept Source OCT system at 1060 nm using a VCSEL swept source light source.	35
12	SS-OCT with high penetration (up to choroido-scleral junction).	36
13	Scanning electron micrographs and SS-OCT reflectance en face images of human CC (a, b), SL (c, d) & HL (e, f).	38
14	Retinoblastoma (a) coloured photo ofsmall macular retinoblastoma. (b-c) SD-OCT of small retinoblastoma. (d) coloured photo of small retinoblastoma. (e) SD-OCT of small retinoblastoma. (f) coloured photo of large endophytic retinoblastoma. (g) SD-OCT of large endophytic retinoblastoma. (h)coloured photo of macular retinoblastoma. (i) SD-OCT of macular retinoblastoma.	42
15	Vasoproliferative tumor (a) Baseline fundus picture (b) Image obtained by time domain OCT.	44
16	Retinal Hemangioblastoma(c) Coloured photo of retinal haemangioblastoma. (d and e) EDI-OCT of retina haemangioblastoma.	46
17	Retinal cavernous hemangioma. Coloured photo (upper right image). with late onset partial fluorescence (upper left image). EDI-OCT scan within the retina (lower image).	48

Fig.	Title	Page
18	Vitreoretinal lymphoma (a, b) Bilateral Baseline fundus picture (c) Image obtained by time domain OCT of the righteye (d) Image obtained by time domain OCT of the left eye.	50
19	Vitreoretinal lymphoma (A and B) Fundus photographs (B)Image obtained OCT.	51
20	Congenital hypertrophy of the retinal pigment epithelium (CHRPE) (a) Baseline fundus picture (b) Image obtained by time domain OCT.	53
21	(a) Baseline fundus photo of CHRPE (b) CHRPE with EDI-OCT.	54
22	Retinal astrocytic hamartoma (a) Baseline fundus picture (b) Image obtained by spectral domain OCT.	56
23	Combined hamartoma of the retina and RPE (a) Baseline fundus picture (b) Image obtained by EDI- OCT.	58
24	Combined hamartoma of the retina and RPE (a) Baseline fundus picture (b) Image obtained by EDI- OCT.	59
25	Choroidal nevus (a) Baseline fundus picture (b) Image obtained by EDI- OCT.	64
26	Choroidal tumors (pigmented) (a) Baseline fundus photo for choroidal nevus (b) Choroidal nevus with EDI-OCT (c) Baseline fundus photo for Chronic choroidal nevus (d) Chronic choroidal nevus with EDI-OCT (e) Baseline fundus photo for small choroidal melanoma (f-g) small choroidal melanoma with EDI-OCT.	66

Fig.	Title	Page
27	Choroidal melanoma (a) Baseline fundus	70
	picture (b) Image obtained by spectral	
	domain OCT.	
28	Choroidal metastasis (a) Baseline fundus	74
	picture (b) Image obtained by EDI- OCT.	
29	Choroidal tumors (nonpigmented) (a)	76
	Baseline fundus photo for choroidal	
	metastasis (b) Choroidal metastasis with	
	EDI-OCT (c) Baseline fundus photo for choroidal lymphoma (d) Choroidal	
	choroidal lymphoma (d) Choroidal lymphoma with EDI-OCT (e) Baseline	
	fundus photo showing choroidal	
	hemangioma (f) Choroidal hemangioma	
	with EDI-OCT.	
30	Circumscribed choroidal haemangioma (A)	78
	Fundus photograph of the right eye showing	
	a circumscribed choroidal haemangioma (B-	
) On B-scan ultrasonography (C) A-scan	
	ultrasonography.	
31	Diffuse choroidal haemangioma (A-B)	79
	Fundus photograph showing diffuse	
	choroidal in the right eye (C) On B-scan	
	ultrasonography.	
32	Circumscribed choroidal	81
	hemangioma(a)coloured photo in the	
	superonasal macula. (b) B-scan	
	ultrasonography. (c) EDI-OCT of	
	circumscribed choroidal haemangioma. (d)	
	Circumscribed choroidal hemangioma in the	
	superonasal macula. (e) B-scan	
	ultrasonography. (f) EDI-OCT imaging of	
	circumscribed choroidal haemangioma. (g)	

Fig.	Title	Page	
	Circumscribed choroidal hemangioma		
	superotemporal to the optic disc. (h) B-scan		
	ultrasonography. (i) EDI-OCT of		
	circumscribed choroidal haemangioma.		
33	Choroidal lymphoma (A-B) Fundus	84	
	photographs of both eyes (C- D)Infrared and		
	OCT images of the left eye.		
34	Choroidal lymphoma as found on EDI-OCT	85	
	(to the left) and baseline fundus photo (to		
	the right).		
35	Choroidal osteoma (g) Baseline fundus	88	
	photo showing choroidal osteoma (h-i)		
	Choroidal osteomawith EDI-OCT.		
36	Choroidal osteoma (a) Baseline fundus	89	
	picture (b) Image obtained by EDI-OCT.		

Introduction

Since Optical Coherence Tomography (OCT) inception in 1991 (Huang et al., 1991), the OCT has found wide role in medicine including gastroenterology (Testoni and Mangiavillano, 2008), dermatology (Gambichlet et al., 2005), cardiology (Bezerra et al., 2009)& ophthalmology (Say et al., 2011). Traditional time domain OCT (TD-OCT), sold commercially in 1995 (Humeric et al., 2012). It was used primarily by retina and glaucoma specialists (Monetro and Saxena, 2012) then it has been largely replaced by Spectral or Fourier domain OCT that provides higher resolution images (4-7um) and faster scanning speeds (up to 40, 000 scans per second) (Walsh, 2008) that could be translated into broader application of OCT for other ophthalmic subspecialties including pediatric ophthalmology, oculoplastics, and ocular oncology (Shields et al., 2004) (a).

OCT is an emerging technology for performing high resolution cross sectional imaging. Unlike conventional histopathology which requires removal of a tissue specimen and processing for microscopic examination, OCT can provide images of tissue in situ (*Fujimoto et al., 2000*).

However the deeper an object to be imaged, the more delay there is to capture that image. In standard OCT moving away from the "zero-delay" which is the point where the interferometric signals are strongest, resulting in diminished choroidal details (*Spaide et al.*, 2008). This is because the

choroid lies behind the retinal pigment epithelium (RPE) and within the opaque sclera so that the choroid has been difficultly imaged. Conventional OCT imaging of the choroid is impeded by the scattering effects of the blood and by the presence of melanin (*Spaide & Mrejen*, 2013).

New OCT technologies now allow imaging the choroid, this includes: (a) Enhanced Depth OCT Imaging (EDI-OCT) (b) Swept Source OCT (SS-OCT) (*Adhi et al.*, *2013*).

If the zero-delay line is placed further posteriorly, usually at the inner sclera, the choroid can be better visualized. This technique is known as EDI-OCT (*Spaide& Mrejen*, *2013*). It can allow in vivo cross-sectional imaging of Choroidal tumors & characterization of the thickness of small (<3mm thick) choroidal lesions including Choroidal nevus and melanoma (*Say et al.*, *2011*).

As regard the SS-OCT, It can visualize clearly the choroidoscleral interface and calculate the mean Choroidal volume (11.77+/-3.13 mm³) so it allows better Choroidal analysis (*Adhi et al.*, 2014).

Advances in OCT will provide better understanding of pathogenesis and response to treatment of chorioretinal diseases (*Adhi and Duker*, 2013).

Aim of the essay

To review the role of Optical Coherence Tomography in imaging retinal and Choroidal tumors.

History of OCT:

The OCT principle was born at Massachusetts Institute of Technology at the beginning of 1990s (*Talu et al.*, 2009). Carl Zeiss (Jena, Germany) made available the first commercial version of OCT in 1996 (*Pierre-Khan et al.*, 2005). The peripapillary area of the retina and the coronary artery were the first structures examined with OCT technology (*Huang et al.*, 1991). The continuous progress in OCT technology transformed this imaging method into a valuable examination tool for the retinal practice (*Ghazi et al.*, 2009). OCT is able to visualize precisely the retinal layers something done before only pathology slides. It is simple, non-invasive & rich in information it gives (*Li et al.*, 2001).

OCT versus the Ultrasound :

OCT became soon a main investigative tool in most of the retina practices and more useful than ultrasound. OCT & ultrasound are based on similar principles, with the difference that OCT uses light instead of sound. Because light propagates nearly a million times faster than the sound, it allows obtaining much higher resolution images in the posterior pole of the eye: $10\mu m$ or less (*Holz and Spaide*, 2006). OCT examination does not require the physical contact with the examined eye, making the examination more comfortable for the patient than ultrasound (*Romas et al.*, 2009).