

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

# Trials for production and evaluation of a combined vaccine against fowl cholera and avian influenza

#### A Thesis Presented By Heba Mohamed Ghanem Abdel Aziz

B.V.Sc., Faculty of Veterinary Medicine, CairoUniversity, 2003 M.V.Sc., Faculty of Veterinary Medicine, CairoUniversity, 2010

For the Degree of Ph.D.
Veterinary Medical Science
Microbiology (Bacteriology, Immunology and Mycology)

#### **Under the Supervision of**

#### Prof. Dr.Mona Ibrahim Hassan El-Enbaawy

Professor of and Head of Microbiology department Faculty of Veterinary Medicine, Cairo University

#### Prof. Dr. Manal Afify Ali Afify

Professor of Poultry Diseases Faculty of Veterinary Medicine, Cairo University

#### Prof. Dr. Ibrahim Soliman Ibrahim

Chief Researcher, Vet. Serum and Vaccine Research Institute, Abbasia, Cairo

#### Prof. Dr. Lamiaa Mohamed Omar

Chief Researcher, Central Laboratory for Evaluation of Veterinary Biologics, Abbasia, Cairo

Cairo University Faculty of Veterinary Medicine **Department of Microbiology** 

#### APPROVAL SHEET

This is to approve that dissertation presented by **Heba Mohamed** Ghanem Abdel Aziz to Cairo University, for the phD Degree in Veterinary Medicine Science in Microbiology (Bacteriology-Immunology-Mycology) has been approved by the examining committee:

Prof. Dr. Mohmed El Said Enane Prof. of Microbiology Faculty of veterinary Medicine Suze Canal University

Prof. Dr. Jakeen Kamal Abd El-Halem EL-Jakee Prof. of Microbiology Faculty of veterinary Medicine Cairo University

Prof. Dr. Mona Ibrahim El-Enbaawy Prof. of Microbiology Faculty of veterinary Medicine Cairo University (Supervision)

Prof. Dr. Manal Afify

Prof. of Poultry Diseases Faculty of veterinary Medicine Cairo University (Supervision)

Mand A. M. F. F. Y Dr. Ibralie Salie Dr. Ibrahim Soliman Ibrahim Chief Researcher Serum and vaccine Research Institute, Abassia. (Supervision)

Date: 18/4/ 2016

Mona EL-Enbaawy

### **Supervision sheet**

#### Prof. Dr.Mona Ibrahim Hassan El-Enbaawy

Professor of and Head of Microbiology department Faculty of Veterinary Medicine, Cairo University

#### Prof. Dr.Manal Afify Ali Afif

Professor of Poultry Diseases Faculty of Veterinary Medicine, Cairo University

#### Prof. Dr. Ibrahim Soliman Ibrahim

Chief Researcher, Vet. Serum and Vaccine Research Institute, Abbasia, Cairo

#### Prof. Dr. Lamiaa Mohamed Omar

Chief Researcher, Central Laboratory for Evaluation of Veterinary Biologics, Abbasia, Cairo

Date of birth: 8/3/1981- Cairo.

**Nationality**: Egyptian

Degree: Thesis PhD Degree

**Specialization**: (Bacteriology – Immmunology – Mycology).

Supervisors: Prof. Dr. Mona Ibrahim Hassan El- Enbaawy; Prof. Dr. Manal Afifi Aly; Prof. Dr. Ibrahim Soliman Ibrahim; Prof. Dr. Lamiaa Mohamed Omar Trials for production and evaluation of a combined vaccine against Fowl Cholera and Avian Influenza

ABSTRACT

The study objective was to prepare 2 vaccines of fowl cholera 1<sup>st</sup> one is bivalent inactivated Fowl Cholera (*P.multocida* (5:A, D2)) vaccine with Montanide ISA70 oil adjuvant (1). 2<sup>nd</sup> one bivalent inactivated Fowl Cholera (*P.multocida* (5: a & D2) vaccine with white oil adjuvant (2).Each vaccine (1) & (2) was vaccinated in a group of chickens (4 weeks old) with dose 0.5 ml S/C, booster dose was given after 1stdose with4 weeks (chicken 8 weeks old) in the 2 groups. Regular withdrawal of blood samples every week. Applying of PHA test on serum collected from 2groups chicken it was clear that AB titer from vaccine (1) is higher than AB titer in group (2). Applying challenge test on the 2 groups of vaccinated chickens in vaccine (1) protection % for 5: a is 95% & D2 is 90%, while for vaccine (2) 5: a is 90% && D2 is 85%.

Depending on these results from the previous experiments, 2vaccinal batches were prepared using Montanide ISA 70 oil adjuvant in the 2 vaccine. 1<sup>st</sup> one (Bivalent inactivated AI vaccine) (3). 2<sup>nd</sup> one (inactivated combined (AI + FC) vaccine (4). each batch was vaccinated in a group of chicken 4weeks old, o.5ml S/C one single dose (no booster dose).HI test was applied on serum collected from vaccinated chickens regularly each week. The result showed AB titer for S1 strain is higher than AB titer in S2 Strain in both vaccines. By applying challenge test using local virulent HPAI (H5N1) challenge virus, the protection % in group (3) 93.3%& in group (4) 86.6%

Key words: Fowl cholera, avian influenza, chickens, vaccination, combined vaccine.

#### **Dedication**

#### I dedicate this to

My mother

My father

My brothers

My husband

L my children Moustafa, Hala L yousef

#### <u>Acknowledgment</u>

I am greatly indebted in all my work and success to our merciful "Allah".

I would like to express my heartfelt thanks and appreciation to **Prof. Dr. Mona Ibrahim Hassan El-Enbaawy**, Professor and Head of Microbiology, Department, Faculty of Veterinary Medicine, Cairo University, for her kind supervision, interest; valuable advice and giving almost help to accomplish this work.

Words cannot express my deepest thanks and gratitude to **Prof. Dr. Manal Afifi Aly Afifi,** Professor of Poultry and rabbit Diseases, Faculty of Veterinary Medicine, Cairo University for her kind supervision; interest, valuable advice and giving almost help to accomplish this work.

I would like to take this opportunity to express my cardinal gratitude and deepest thanks **Prof. Dr. Ibrahim Soliman**Ibrahim, Chief Researcher, Bacterial Vaccine Department, Veterinary Serum and Vaccine Research Institute,

Abbasia, Cairo, for his supervision, kindness, and faithful till end of this work.

I would like to express my sincere gratitude to **Prof. Dr. lamiaa Mohamed Omar** Chief Researcher and Head of inactivated poultry Vaccine department, Central Laboratory for Evaluation of Veterinary biologics, Abbasia, Cairo, for her great supervision and help.

I would like also to express my sincere gratitude and high respective Acknowledgement to **Prof. Dr.**Mohamed Hassan Khodeir, Chief Researcher, Department of Pet Animal Research Vaccine, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, for his great help.

I am especially indebted to **Prof Dr. Ibrahim Soliman**, Chief Researcher, African horse Department, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, for his great help through my study.

Iam also grateful to New Castle Department Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, for their great help.

I am also grateful to Biotechnology Department, for his great help through my study. Great thanks to stuff members of Central Laboratory for Evaluation of Veterinary Biologics.

It is a pleasure to record gratefulness and appreciation to my family for their great help and encouragement.

## **List of Content**

| Title                                                               | Page   |
|---------------------------------------------------------------------|--------|
| 1.NTRODUCTION                                                       | 1      |
| 2.REVIEW OF LITTERATURE.                                            | 5      |
| 2.1. Pasturella multocida                                           | 5      |
| 2.1.1 Pasturella multocida as causative agent of fowl cholera       | 5<br>5 |
| 2.1.2 Macroscopical appearance for pasturellamultocida              | 6      |
| 2.1.3. Isolation and characterization of P. multocida               | 7      |
| 2.1.4.Serological typing of P. multocida                            | 10     |
| 2.1.5. Fowl cholera vaccine                                         | 13     |
| 2.1.5.1.Inactivated fowl cholera vaccine                            | 13     |
| 2.1.5.2.Combined fowl cholera vaccines                              | 16     |
| 2.1.6.Monitoring of humoral response against P. multocida           | 18     |
| 2.1.6.1.Indirect haemagglutination test (IHA)                       | 18     |
| 2.2.Avian Influenza                                                 | 23     |
| 2.2.1.Definition                                                    | 24     |
| 2.2.2.History of AI                                                 | 24     |
| 2.2.2.1.In the world                                                | 24     |
| 2.2.2.2.In Egypt                                                    | 29     |
| 2.2.3.Etiology and classification                                   | 32     |
| 2.2.4.Natural and Experimental Hosts of Avian influenza             | 33     |
| 2.2.5.Mode of transmission of Avian influenza                       | 34     |
| 2.2.6.Incubation period                                             | 35     |
| 2.2.7.Clinical signs                                                | 35     |
| 2.2.7.1. Highly pathogenic avian influenza (HPAI) viruses           | 35     |
| 2.2.8.Postmortem lesions                                            | 35     |
| 2.2.8.1.Highly pathogenic avian influenza                           | 35     |
| 2.2.9.Laboratory diagnosis of influenza virus                       | 36     |
| 2.2.9.1.Sample collection and storage                               | 36     |
| 2.2.9.2. Influenza Virus isolation and detection                    | 37     |
| 2.2.9.3. Virus identification and characterization                  | 39     |
| 2.2.10.Serological assays                                           | 41     |
| 2.2.10.1. Evaluation of humoral immune response of A.I. virus Using | 42     |
| Haemagglutination inhibition test (HI)                              |        |
| 2.2.11.Vaccination and control                                      | 44     |
| 2.2.11.1.Types of vaccines                                          | 46     |
| 2.2.11.1.1.Inactivated vaccines                                     | 46     |
| 2.2.11.1.2.Reassortant influenza vaccines                           | 47     |
| 2.2.12. In activator and Adjuvant                                   | 51     |
| 3- MATERIAL AND METHODS                                             | 53     |
| 3.1. MATERIAL                                                       | 53     |

| 3.1.1.Experimental hosts                                                       | 53       |
|--------------------------------------------------------------------------------|----------|
| 3.1.1.1.Embryonated chicken eggs                                               | 53       |
| 3.1.1.2.SPF chicken                                                            | 53       |
| 3.1.1.3. Mice                                                                  | 53       |
| 3.1.2.Strains, antisera and antigen used                                       | 53       |
| 3.1.2.1. Virulent strain of Pasteurella multocida                              | 53       |
| 3.1.2.2.Pasteurella multocida antisera (Diagnostic)                            | 54       |
| 3.1.2.3.Avian influenzaViral strains                                           | 54       |
| 3.1.2.4.Avian influenza master seed viruses                                    | 54       |
| 3.1.2.5 .Challenged AIV strain                                                 | 57       |
| 3.1.2.6.AIV antigen                                                            | 58       |
| 3.1.2.7.Reference avian influenza antisera                                     | 58       |
| 3.1.3.Materials used for identification                                        | 58       |
| 3.1.3.1.Bacteriological media for identification and propagation of <i>P</i> . | 58       |
| multocida strains                                                              |          |
| 3.1.3.1.1.Tryptose broth (Oxoid)                                               | 58       |
| 3.1.3.1.2.Tryotose agar(Oxoid)                                                 | 58       |
| 3.1.3.1.3.Blood agar base (Oxoid)                                              | 58       |
| 3.1.3.1.4. Brain heart infusion broth (Oxoid)                                  | 58       |
| 3.1.3.1.5. Brain heart infusion broth (Oxoid)                                  | 58       |
| 3.1.4. Media used for biochemical reaction used for <i>P.multocida</i> strains | 58       |
| 3.1.4.1. Peptone Water (2%)                                                    | 58       |
| 3.1.4.2.Glucose phosphate broth                                                | 59       |
| 3.1.4.3.Simmon's citrate agar: (Oxoid)                                         | 59       |
| 3.1.4.4. Triple sugar iron agar media (Gibco, 13H9041)                         | 59       |
| 3.1.4. 5.Christensen's urease agar slants (Merck)                              | 59       |
| 3.1.4.6.Gelatin liquefaction media                                             | 59       |
| 3.1.4.7.Sugar media                                                            | 59       |
| 3.1.5. Chemicals and reagents used in biochemical tests                        | 59       |
| 3.1.5.1.Hydrogen peroxide (H2O2)                                               | 59       |
| 3.1.5.2.Kovac's reagent for indole test                                        | 59       |
| 3.1.5.3.Methyl red: (pH indicator for methyl red test)                         | 59       |
| 3.1.5.4.Voges- Proskauer reagent for vogesproskauer test                       | 59       |
| 3.1.5.5.Oxidase reagent                                                        | 60       |
| 3.1.5.6.Gram's stain.                                                          | 60       |
| 3.1.6.Materials used for passive haemagglutination for P. Multocida            | 60       |
| 3.1.6.1. Sheep red blood cells                                                 | 60       |
| 3.1.6.2. Formalin: (Radial, de Hae Un-N, 1198)                                 | 60       |
| 3.1.7. Materials used for identification and serology of Avian influenza       | 60       |
| 3.1.7.1.Materials used in HA and HI tests for AI                               | 60       |
| 3.1.7.1.1.Serum samples                                                        | 60       |
| 3.1.7.1.2. Chicken red blood cells                                             | 60       |
| 3.1.8.Reagents and buffers for extraction of viral RNA of by QIAamp®           | 61       |
| Viral RNA Mini Spin Column Kit for detection of shedding in                    | <b>4</b> |
| experimental chickens after vaccination                                        |          |
| 3.1.8.1. RNase free water (Sigma)                                              | 61       |

| 3.1.8.2. Ethanol (96-100% purity) (Analar)                             | 61 |
|------------------------------------------------------------------------|----|
| 3.1.8.3. QIAamp® Viral RNA Mini kit buffers                            | 61 |
| 3.1.8.3.1.AVL Buffer (QIAGEN)                                          | 61 |
| 3.1.8.3.2. Carrier RNA Pellet (QIAGEN)                                 | 61 |
| 3.1.8.3.3. Buffer AVL/ Carrier RNA solution                            | 61 |
| 3.1.8.3.4. AW1 Buffer (QIAGEN)                                         | 62 |
| 3.1.8.3.5.AW2 Buffer (QIAGEN )                                         | 62 |
| 3.1.8.3.6.AVE Buffer (QIAGEN)                                          | 62 |
| 3.1.8.3.7.QIAamp Spine Columns                                         | 62 |
| 3.1.9.Reagents and buffers for real-time reverse transcriptase rt- PCR | 62 |
| utilizingSingle Tube Reaction                                          |    |
| 3.1.9.1.RNA Extract                                                    | 62 |
| 3.1.9.2. RNase Free Water (Sigma)                                      | 63 |
| 3.1.9.3. Tris-EDTA Buffer (TE), PH8.                                   | 63 |
| 3.1.9.4. Oligonucleotide Primers                                       | 63 |
| 3.1.9.5. Oligonucleotide Prob for AIV-H5                               | 63 |
| 3.1.9.6. Verso 1-step qRT-PCR kit plus ROX vial (Thermo)               | 63 |
| 3.1.10. Reagents used in preparation of inactivated vaccines           | 64 |
| 3.1.10.1.Binary Ethylenimine (BEI)                                     | 64 |
| 3.1.10.2.Sodium thiosulphate solution (Merck, Germany)                 | 64 |
| 3.1.10.3.Sodium hydroxide                                              | 64 |
| 3.1.11. Adjuvant                                                       | 64 |
| 3.1.11.1.Montanide ISA 70 VG                                           | 64 |
| <b>3.1.11.2.</b> White oil (Mobil Co.);                                | 64 |
| 3.1.11.3. sorbtin monooleat "Span"                                     | 64 |
| 3.1.11.4.Polyxythlenesorbitan (tween 80).                              | 64 |
| 3.1.12. Chemicals and buffers                                          | 64 |
| 3.1.12.1. Physiological saline.                                        | 64 |
| 3.1.12.2. Alsever's solution for collection of erythrocytes            | 65 |
| 3.1.12.3. Phosphate buffer saline (PBS)                                | 65 |
| 3.1.12.4. Antibiotic solutions                                         | 65 |
| 3.1.13. Media used for testing the sterility of the prepared Vaccines  | 65 |
| 3.1.13.1. Saboraud's dextrose agar:                                    | 65 |
| 3.1.13.2. Thioglycolate broth with 0.5% beef extract                   | 65 |
| 3.1.13.3.Thioglycolate broth                                           | 65 |
| 3.1.13.4. Mycoplasma broth (Oxoid)                                     | 65 |
| 3.1.13.5. Mycoplasma agar (Oxoid)                                      | 65 |
| 3.2. METHODS                                                           | 66 |
| 3.2.1.Confirmation of the Pasturella multocida strains                 | 66 |
| 3.2.1.1.Mice inoculation                                               | 66 |
| 3.2.1.2. Colonial morphology                                           | 66 |
| 3.2.1.3MacConkey media                                                 | 66 |
| 3.2.1.4. Biochemical characteristics                                   | 66 |
| 3.2.1.4.1.Indol test                                                   | 66 |
| 3.2.1.4.2.Methyl red (M.R) test                                        | 67 |
| 3.2.1.4.3. Voges Proskaeur test                                        | 67 |
|                                                                        |    |