Soluble Lectin like Oxidized LDL Receptor-1 (sLOX-1): A Recent Marker for Prediction of High Risk CAD Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

Ву

Ola Aboutaleb Othman Younis

M.B., B. Ch., Ain Shams University

Under Supervision of

Professor / Nasser Sadek Rezk

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor / Amira Ibrahim Hamed

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor / Noha Refaat Mohamed

Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
Cairo – 2014

Acknowledgement

First and last thanks to **ALLAH** for granting me the strength and will to accomplish this work, as we owe Him the great care, support, and guidance in every step of our lives.

I would like to express my cardinal appreciation and infinite gratitude to **Professor**/ **Nasser Sadek Rezk**, Professor of Clinical and Chemical Pathology, faculty of medicine, Ain Shams University, for his supervision and the great effort he has done in the meticulous revision of the whole work.

I am also grateful to **Doctor/ Amira Ibrahim Hamed,** Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her guidance, continuous assistance, sincere supervision, great support, kind advices and valuable suggestion.

I would like to express my gratitude to **Doctor**/ **Noha Refaat Mohamed**, Lecturer of Clinical and Chemical

Pathology, faculty of medicine, Ain Shams University, I will

never forget her unlimited help, continuous support, kind

encouragement, constructive criticism and wise guidance.

Finally, I dedicate this work to my family and friends whom, without their emotional support pushing me forward, this work would not have ever been completed.

🖎 Ola Aboutaleb

List of Contents

Subjec	et e	Page No.
List of A	Abbreviations	i
List of	Гables	vi
List of 1	Figures	vii
Introdu	ıction	1
Aim of	the Work	4
Review	of Literature	
I-	Coronary Artery Disease	5
	A- Introduction	5
	B- Epidemiology	5
	C- Pathogenesis of CAD	6
	D- Risk Factors of Coronary Artery Dise	ease15
	E- Diagnosis	37
	F- Prevention	51
	G- Prognosis of CAD	52
II-	Soluble Lectin-Like Oxidized LDL Receptor-1 (sLOX-1)	54
	A- Introduction	
	B- Structure of LOX-1 Protein	55
	C- Regulation of LOX-1 Gene Expression	on56
	D- Cellular Responses Involving LOX-1	57
	E- Pathophysiological Role of LOX-1 in Atherosclerosis	
	F- Clinical Significance of sLOX-1	64
	G- Methods of Assay of LOX-1	73

List of Contents (Cont...)

Subject	Page No.
Subjects and Methods	77
Results	95
Discussion	106
Summary and Conclusion	111
Recommendations	115
References	116
Arabic Summary	······

List of Abbreviations

Abbrev.		Full term
Ab	:	Antibody
ACE	:	Angiotensin-converting enzyme
ACS	:	Acute coronary syndrome
ADMA	:	asymmetric dimethyl arginine
Ag	:	Antigen
AMI	:	Acute myocardial infarction
Ang II	:	Angiotensin II
ATP III	:	Adult Treatment Panel III
AUC	:	Area under the curve
BMI	:	Body mass index
Ca	:	Calcium
CABG	:	Coronary artery bypass graft
CAD	:	Coronary artery disease
cAMP	:	Cyclic adenosine monophosphate
CD	:	Cluster of differentiation
CE	:	Cholesterol esterase
CHD	:	Coronary heart disease
CK	:	creatine kinase enzyme
CK-MB	:	Creatine kinase MB fraction
CK-MM	:	Creatine kinase MM fraction
CK-BB	:	Creatine kinase BB fraction
CO	:	Cholesterol oxidase
CRP	:	C-reactive protein
cTn	:	Cardiac troponin
CVD	:	Cardiovascular diseases
DHBS	:	Dichloro 2 hydroxybenzene sulphuric acid
DNA	:	Deoxyribonucleic acid
ECG	:	Electrocardiography

Abbrev.		Full term
ECM	:	extracellular matrix
ECs	:	Endothelial cells
ELISA	:	Enzyme-linked immunosorbent assay
eNOS	:	Endothelial nitric oxide synthase
ERK	:	Extracellular signal-regulated kinases
ESC/ACC	:	European Society of Cardiology and the American College of Cardiology
ESR	:	Erythrocyte sedimintation rate
ET-1	:	Endothelin-1
FFA	:	Free fatty acid
FN	:	False negative
FP	:	False positive
FRS	:	Framingham risks
GK	:	Glycerol kinase
GLDH	:	Glutamate dehydrogenase
GO	:	Glycerophosphate oxidase
H2O2	:	Hydrogen peroxide
HCAECs	:	Human coronary artery endothelial cells
HCL	:	Hydrochloric acid
HDL-C	:	High-density lipoprotein-Cholesterol
H-FABP	:	Heart-fatty acid binding protein
HRP	:	Horseradish peroxidase
hsCRP	:	High-sensitivity CRP
ICAM-1	:	Intercellular adhesion molecule-1
IFG	:	Impaired fasting glucose
IFN γ	:	Interferon gamma
Ig	:	Immunoglobulin
IGF-1	:	Insulin growth factor-1
IGFBP-4	:	Insulin-like growth factor binding protein-4

Abbrev.		Full term
IGT	:	Impaired glucose tolerance
IL-6	:	Interleukin-6
INR	:	International normalized ratio
IQR	:	Inter-quartile Range
KDa	:	Kilodalton
LOX-1	:	Lectin-like oxidized low-density lipoprotein receptor-1
LDL -C	:	Low density lipoprotein -Cholesterol
LSD	:	Least significant difference
MAPK	:	Mitogen-activated protein kinase
MCP-1	:	Monocyte chemoattractant protein-1
MI	:	Myocardial infarction
MMPs	:	Matrix metalloproteinases
MPO	:	Myeloperoxidase
mRNA	:	Messenger RNA
NADPH	:	Nicotinamide adenine dinucleotide phosphate- oxidase
NCEP	:	National cholesterol education program
NF-κB	:	Nuclear factor kappa
NO	:	Nitric oxide
NOS	:	Nitric oxide synthase
NSTEMI	:	Non ST-Segment elevated myocardial infarction
OxLDL	:	Oxidized low-density lipoprotein
p	:	Probability
PA	:	Plasminogen activator
PAD	:	Peripheral artery disease
PAI-1	:	Plasminogen activator inhibitor-1
PAPP-A	:	Pregnancy-associated plasma protein
PCI	:	Percutaneous coronary intervention

Abbrev.		Full term
PCR	:	Polymerase chain reaction
PPBG	:	postprandial blood glucose
PKC	:	Protein kinase C
PLGF	:	Placental like growth factor
PNV	:	Predictive value for a negative test
PPAR γ	:	Peroxisome proliferator-activated receptor gamma
PPV	:	Predictive value for a positive test
PRR	:	Pattern-recognition receptors
RAS	:	Rennin angiotensin system
RBCs	:	Red blood cells
ROC	:	Receiver-operating characteristic
ROS	:	Reactive oxygen species
$\mathbf{r}_{\mathbf{s}}$:	Spearman's rank correlation
RT-PCR	:	Reverse transcriptase polymerase chain reaction
SAA	:	Serum amyloid A
sCD40L	:	Soluble cluster of differentiation 40 ligand
SD	:	Standard deviation
sLOX-1	:	Soluble Lectin-like oxidized low-density
		lipoprotein receptor-1
SMCs	:	Smooth muscle cells
SR	:	Scavenger receptors
SS	:	Syntax Score
STEMI	:	ST-Segment elevated myocardial infarction
T2DM	:	Type 2 diabetes mellitus
TC	:	Total cholesterol
TG	:	Triglycerides
TGF-h	:	Transforming growth factor-h
Th	:	T helper
TIMPs	:	Tissue inhibitor of metalloproteinases
		r

Abbrev.		Full term
TLRs	:	Toll-like receptors
TMB	:	Trimethyl phosphate
TN	:	true negative
TNF-αR1	:	Tumor necrosis factor-alpha receptor-1
TNF-α	:	Tumor necrosis factor-alpha
TP	:	True positive
UA	:	Unstable angina
UV	:	Ultraviolet
VCAM-1	:	Vascular-cell adhesion molecule-1
VEGF	:	Vascular endothelial growth factor
VLDL	:	Very low density lipoprotein
VSMCs	:	Vascular smooth muscle cells
WHO	:	World Health Organization
2hrs PP BG	:	2hours postprandial blood glucose
4-AAP	:	4-aminoantipyrine

LIST OF TABLES

Table Wa	9. Title Page (1	No.
Table (1):	The Relationship Between Risk of Developing of CAD and Cholesterol Subtypes and Triglycerides Levels According to NCEP-ATP III.	20
Table (2):	Regulated Expression of LOX-1:	57
Table (3):	Descriptive Statistics of Measured Parameters in the Studied Groups.	98
Table (4):	Comparison Between Measured Parameters in the various studied groups, Using Student's t Test for Parametric Data and Wilcoxon Rank Sum Test for Skewed Data.	99
Table (5):	Correlation Study between sLOX-1 and the Other Studied Parameters in Stable CAD Patients (Group Ia), Using Ranked Spearman's Correlation Coefficient.	.100
Table (6):	Correlation Study between sLOX-1 and the Other Studied Parameters in ACS Patients (Group Ib), Using Ranked Spearman's Correlation Coefficient.	.101
Table (7):	Diagnostic Performance of sLOX-1& Syntax Score for Discriminating Patient's Group (Group I) from Control Group (group II).	.103
Table (8):	Diagnostic Performance of sLOX-1& Syntax Score for Discriminating ACS Patients (Gp Ib) from Stable CAD Patients (Gp Ia)	.105

LIST OF FIGURES

Tuyure v	w. Suit Puyt wo	•
Figure (1):	Activating effect of LDL infiltration on inflammation in the artery	7
Figure (2):	Role of macrophge in inflammation of the artery1	0
Figure (3):	Effects of T-cell activation on plaque inflammation1	1
Figure (4):	Schematic figure illustrating the most common type of vulnerable plaque characterized by thin fibrous cap, extensive macrophage infiltration, paucity of smooth muscle cells,and large lipid core, without significant luminal narrowing.	4
Figure (5):	Pathophysiology of the metabolic syndrome22	3
Figure (6):	Schematic diagram of scavenger receptor family members with proposed roles in atherosclerosis5.	5
Figure (7):	LOX-1 is composed of four domains5	6
Figure (8):	Role of LOX-1 in atherosclerosis5	8
Figure (9):	The principle of sandwich ELISA7	4
Figure (10):	Human LOX-1 ELISA Standard Curve8	6
Figure (11):	ROC curve analysis showing the diagnostic performance of sLOX-1 and Syntax Score for discriminating patient group (Gp I) from control group (Gp II)	2
Figure (12):	ROC curve analysis showing the diagnostic performance of sLOX-1 and syntax score for discriminating ACS patients (Group Ib) from Stable CAD patients (Group Ia)	4

INTRODUCTION

Characterized by reduced or absent blood flow in one or more of the arteries that encircle and supply the heart. The disease may be focal or diffuse (*Shaw et al.*, 2012). In fact, due to the progressive nature of CAD, some patients may develop advanced and complex disease that is no longer amenable to conventional surgical or percutaneous intervention (*Ngaage et al.*, 2008).

It is expected that CAD will be the leading cause of death in developing countries by the year 2020. In Egypt, mortality secondary to CAD is rapidly rising. According to World Health Organization (WHO) statistics, the age-standardized mortality rates from CAD are one of the highest worldwide. One possible explanation is the high prevalence rate of CAD risk factors; Hypertension, dyslipidemia and obesity which are common among Egyptians (*Ibrahim et al.*, 2012).

In almost all cases of CAD, the development of fibrofatty atheromatous plaques within the walls of the coronary artery asymptomatically begins at a young age and it is often many years later that clinical manifestations occur. In approximately 50 % of women and 40% of men the first presentation of CAD is new exertional (stable) angina, which, whilst associated with a 10% risk of death or myocardial infarction during the following year has, thereafter, a good prognosis. Conversely, in 45% men and 35% women the initial presentation is either rapidly-worsening unpredictable (unstable) angina or Acute Coronary Syndrome (ACS) (*Poole-Wilson et al.*, 2007).

Rupture of vulnerable plaques with subsequent thrombus formation has been implicated as the most common pathogenic mechanism responsible for the development of ACS. Although an invasive procedure, angiography is nowadays the gold standard for identification of high risk plaques which presents as angiography complex lesions "the angiographic hallmark of plaque vulnerability". Angiographically complex lesions correlate with pathologic plaque rupture and thrombus and have been shown to provide prognostic information. Therefore, it is important to develop a noninvasive blood biomarker to provide incremental predictive value for accurate prognostication of angiographically complex lesions in patients with CAD when added to other traditional risk factors (*Niccoli et al., 2010*).

The lectin-like oxidized low density lipoprotein receptor (LOX-1), a type II membrane glycoprotein and scavenger receptor, was identified as an oxidized low density lipoprotein (ox-LDL) receptor mainly expressed by endothelial cells but also expressed by macrophages and vascular smooth muscle cells. Lectin-like oxidized low-density lipoprotein receptor-1 is involved in multiple phases of vascular dysfunction, including endothelial dysfunction, atherogenesis, initiation of plaque rupture, and restenosis (*Balin et al., 2012*). Like many cell-surface receptors with a single transmembrane domain, LOX-1

can be proteolytically cleaved at its membrane proximal extracellular domain and released as a soluble form (sLOX-1). The level of circulating sLOX-1 may reflect the expression of LOX-1, and is increasingly viewed as a biomarker for CAD (*Lubrano et al.*, 2009).

Researches have hinted to the level of circulating sLOX-1 that is significantly higher in patients with ACS than in patients with stable CAD. Moreover, they observed a striking association between increments in sLOX-1 levels and number of complex vascular lesions (*Zhao et al.*, 2011).