

# Role of serum prolactin in psoriasis

Thesis
Submitted for partial fulfillment of the
Master Degree in
Dermatology and Venereology

By

Dalia Abdel-Gawad Abou El-Fadl

M.B.B.Ch. Faculty of Medicine - Ain Shams University

Supervised

By

Prof. Dr. Mahira Hamdy El-Sayed

**Professor of Dermatology and Venereology Faculty of Medicine - Ain Shams University** 

Dr. Ranya Lotfi

Assistant Professor of Dermatology and Venereology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
Department of Dermatology and Venereology

2014

بسم الله الرحمن الرحيم

هِيكِمَا مُيلِعال حَيناً خَانًّا إِنَّا لَهُ لَا إِنَّا مَالِا لَهُ مَالِا اللَّهُ عَالَمَ الْمَالَة

صدق الله العظيم سورة البقرة آيه (٣٢)

## Acknowledgment

First, thanks to Allah. I feel always indebted to Allah, the most kind and the most merciful.

I would like to express my gratefulness and respect to **Prof. Dr. Mahira Hamdy Elsayed,** Professor of Dermatology, Venereology, and Andrology, Ain Shams University, who gave me the honour of working under her meticulous supervision and valuable guidance.

I am deeply indebted to **Dr. Ranya Lotfi**, Assistant Professor of Dermatology Venereology, and Andrology, Ain Shams University, for her constructive and instructive comments and valuable suggestions. She gave a lot of her precious time following every step in the work and encouraged me all the time for a better performance.

Words cannot describe my gratefulness to my family who provided me with every mean of support.

Finally, great thanks to all staff members and colleagues for their support and moral.

Dalia Abdel-Gawad

### **CONTENTS**

| TITLE                                                      |    |
|------------------------------------------------------------|----|
| • INTRODUCTION                                             | 1  |
| • AIM OF THE WORK                                          | 2  |
| • REVIEW OF LITERATURE                                     | 3  |
| o Chapter 1: Psoriasis                                     | 3  |
| <ul> <li>Epidemiology</li> </ul>                           | 3  |
| <ul> <li>Predisposing factors</li> </ul>                   | 4  |
| <ul><li>Histopathology</li></ul>                           | 9  |
| <ul> <li>Clinical picture</li> </ul>                       | 10 |
| <ul><li>Pathogenesis</li></ul>                             | 14 |
| <ul><li>Treatment</li></ul>                                | 27 |
| o Chapter 2: Prolactin                                     |    |
| <ul> <li>Structure of prolactin</li> </ul>                 | 31 |
| <ul> <li>Synthesis and regulation of secretions</li> </ul> | 33 |
| <ul> <li>Prolactin plasma level</li> </ul>                 | 35 |
| <ul> <li>Prolactin receptors and signalization</li> </ul>  | 39 |
| <ul> <li>Prolactin and skin</li> </ul>                     | 41 |
| <ul> <li>Chapter 3 : prolactin and psoriasis</li> </ul>    | 44 |
| <ul><li>Introduction</li></ul>                             | 44 |
| <ul> <li>Role of prolactin in psoriasis</li> </ul>         | 45 |
| • SUBJECTS AND METHODS                                     | 48 |
| • RESULTS                                                  |    |
| • DISCUSSION                                               |    |
| • SUMMARY AND CONCLUSION                                   |    |
| • REFERENCES                                               |    |
| ARARIC SUMMARY                                             |    |

### LIST OF ABBREVIATIONS

| AA     | Aminoacids                                                                                                 |
|--------|------------------------------------------------------------------------------------------------------------|
| ACE    | Angiotensin-converting enzyme                                                                              |
| APC    | Antigen presenting cell                                                                                    |
| CD     | Cluster of differentiation                                                                                 |
| CLA    | Cutaneous lymphocyte antigen                                                                               |
| Cs-A   | Cyclosporine-A                                                                                             |
| CXC    | A chemokine super family in which there are four conserved cystine (C) residues where X is any amino acid. |
| CXCL   | Chemokine ligand                                                                                           |
| DC     | Dendritic cell                                                                                             |
| ERAP1  | Endoplasmic Reticulum Aminopeptidase 1 gene                                                                |
| ESR    | Erythrocyte sedimentation rate                                                                             |
| GABA   | Gamma aminobutyric acid                                                                                    |
| GAP    | Gonadotropin releasing hormone-associated peptide                                                          |
| GH     | Growth hormone                                                                                             |
| GM-CSF | Granulocyte-macrophage colony stimulating factor                                                           |
| HFs    | Hair follicles                                                                                             |
| HIV    | Human Immunodeficiency Virus                                                                               |
| HLA    | Human Leukocyte Antigen                                                                                    |
| ICAM-1 | Intercellular Adhesion Molecule-1                                                                          |
| IFIH   | Interferon-Induced Helicase gene                                                                           |
| IFN-γ  | Interferon gamma                                                                                           |
| Ig     | Immunoglobulin                                                                                             |
| IL     | Interleukin                                                                                                |
| IL28RA | Interleukin 28 Receptor Alpha gene                                                                         |
| IP-10  | Inducible protein- 10                                                                                      |
| Jak    | Janus kinase                                                                                               |
| LFA-1  | Lymphocyte function associated antigen-1                                                                   |
| MAPK   | Mitogen-acivated protein kinase                                                                            |
| МНС    | Major Histocompatibility Complex                                                                           |
|        |                                                                                                            |

# LIST OF ABBREVIATIONS (Cont...)

| MIG               | Monokine induced by interferon gamma                             |
|-------------------|------------------------------------------------------------------|
| MS                | Multiple sclerosis                                               |
| NFKB              | Nuclear factor kappa B                                           |
| NKT               | Natural killer T cell                                            |
| NSAIDs            | Non-steroidal anti-inflammatory drugs                            |
| PASI              | Psoriasis Area Severity Index                                    |
| PGA               | Physician global assessment                                      |
| PIF               | Prolactin inhibitory factor                                      |
| PRF               | Prolactin releasing factor                                       |
| PRL               | Prolactin                                                        |
| PRLR              | Prolactin receptor                                               |
| PRL-rp            | Prolactin releasing peptide                                      |
| PSORS             | Psoriasis susceptibility gene                                    |
| PUVA              | Psoralens and ultraviolet A                                      |
| RA                | Rheumatoid arthritis                                             |
| RANTES            | Regulated upon Activation, Normal T-cell Expressed, and Secreted |
| REL               | Reticuloendotheliosis gene                                       |
| REM               | Rapid eye movement                                               |
| SLE               | Systemic lupus erythematosus                                     |
| SS                | Sjogren's syndrome                                               |
| SSc               | Systemic sclerosis                                               |
| STAT              | Signal transducer and activator of transcription                 |
| T-AP interactions | T-cell/APC interactions                                          |
| T-bet             | T-cell associated transcription factor                           |
| TBSA              | Total body surface area                                          |
| Тс                | T-cytotoxic cell                                                 |
| TGF-β             | Transforming growth factor- beta                                 |

# LIST OF ABBREVIATIONS (Cont...)

| Th       | T- helper cell                                                            |
|----------|---------------------------------------------------------------------------|
| TNF-α    | Tumor necrosis factor- alpha                                              |
| TRAF3IP2 | Tumor necrosis factor receptor-associated factors 3 Interacting protein 2 |
| T-reg    | T- regulatory cell                                                        |
| TRH      | Thyrotropin releasing hormone                                             |
| TYK2     | Tyrosine Kinase 2 gene                                                    |
| UVB      | Ultraviolet-B                                                             |
| VCAM-1   | Vascular cell adhesion molecule                                           |
| VEGF     | Vascular endothelial growth factor                                        |
| VIP      | Vasoactive intestinal peptide                                             |
| VLA-4    | Very late antigen- 4                                                      |

### LIST OF FIGURES

|    | FIGURE                                                                                                 | Page |
|----|--------------------------------------------------------------------------------------------------------|------|
| 1  | Histopathology of psoriasis.                                                                           | 9    |
| 2  | Clinical features of psoriasis.                                                                        | 12   |
| 3  | Pathogenesis of psoriatic lesion.                                                                      | 17   |
| 4  | T-cell activation signals.                                                                             | 18   |
| 5  | Activation of naïve CD4+ T-cells by APCs and the development of different active CD4+ T-cell lineages. | 19   |
| 6  | Five steps of skin infiltration of T-cells.                                                            | 21   |
| 7  | The psoriatic cascade.                                                                                 | 23   |
| 8  | Psoriasis treatment ladder.                                                                            | 28   |
| 9  | Primary structutre of prolactin.                                                                       | 32   |
| 10 | Tertiary structure of prolactin.                                                                       | 32   |
| 11 | Regulation of prolactin secretion.                                                                     | 35   |
| 12 | Prolactin signal pathways.                                                                             | 39   |
| 13 | Proposed functions of prolactin in skin.                                                               | 41   |
| 14 | Use of Rule of Nine to estimate total body surface area.                                               | 52   |
| 15 | Chronic plaque psoriasis                                                                               | 58   |
| 16 | Erythrodermic psoriasis                                                                                | 58   |
| 17 | Pustular psoriasis                                                                                     | 59   |
| 18 | Percent of patients in different types of psoriasis.                                                   | 60   |

### List of Figures

| 19 | Differences between cases and control as regard age and prolactin level.                                                     | 62 |
|----|------------------------------------------------------------------------------------------------------------------------------|----|
| 20 | No significant difference among males and females with plaque psoriasis as regard age, PASI score and prolactin level.       | 64 |
| 21 | No significant difference between males and femles with pustular psoriasis as regard age, BSA and prolactin level.           | 66 |
| 22 | No significant difference between males and females with erthrodermic psoriasis as regard mean age, BSA and prolactin level. | 68 |
| 23 | No significant difference between pustular and erythrodermic psoriasis cases as regard BSA and prolactin level.              | 70 |
| 24 | No significant difference between pustular and erythrodermic psoriasis cases as regard BSA and prolactin level.              | 71 |
| 25 | Direct proportion between prolactin level and BSA among pustular psoriasis cases.                                            | 72 |
| 26 | Direct proportion between prolactin level and BSA among erythrodermic psoriasis cases.                                       | 73 |
| 27 | No significant difference between different types of psoriasis as regard age and prolactin level.                            | 74 |

# LIST OF TABLES

|    | TABLE                                                                                                              | Page |
|----|--------------------------------------------------------------------------------------------------------------------|------|
| 1  | Cytokines and chemokines that play a role in the immunologic cascade of psoriasis.                                 | 25   |
| 2  | Treatment options in psoriasis.                                                                                    | 29   |
| 3  | Summary of some biologics and their actions.                                                                       | 30   |
| 4  | PASI score.                                                                                                        | 51   |
| 5  | Description of personal and medical data among all psoriasis cases.                                                | 60   |
| 6  | Description of personal and medical data among controls                                                            | 61   |
| 7  | Comparison between cases and control as regard personal data and prolactin level                                   | 61   |
| 8  | Multivariate analysis to study the effect of independent variables on prolactin level among cases and controls.    | 62   |
| 9  | Description of personal and medical data among plaque psoriasis cases                                              | 63   |
| 10 | Comparison between males and females among plaque psoriasis cases as regard age, PASI score and prolactin level    | 64   |
| 11 | Multivariate analysis to study the effect of independent variables on prolactin level among plaque psoriasis cases | 65   |
| 17 | Description of personal and medical data among pustular psoriasis cases                                            | 65   |
| 13 | Comparison between males and females among pustular psoriasis cases as regard age, BSA and prolactin level         | 66   |

# LIST OF TABLES (Cont..)

| 14 | Multivariate analysis to study the effect of independent variables on prolactin level among pustular psoriasis cases.  | 67 |
|----|------------------------------------------------------------------------------------------------------------------------|----|
| 15 | Description of personal and medical data among<br>Erythrodemic psoriasis cases                                         | 67 |
| 16 | Comparison between males and females among<br>Erythrodemic cases as regard age, BSA and prolactin<br>level             | 68 |
| 17 | Multivariate analysis to study the effect of independent variables on prolactin level among erythrodermic cases.       | 69 |
| 18 | Comparison between pustular and erythrodermic cases as regard age, BSA and prolactin level                             | 69 |
| 19 | Correlations between each of age, PASI score and Prolactin level among plaque psoriasis cases                          | 71 |
| 20 | Correlations between each of age, BSA and Prolactin level among pustular psoriasis cases.                              | 72 |
| 21 | Correlations between each of age, BSA and Prolactin level among erythrodemic psoriasis cases                           | 73 |
| 22 | Comparison between plaque, pustular ,erythrodermic and controls as regard age,sex and prolactin level                  | 74 |
| 23 | Comparison between plaque, pustular and erythrodermic cases as regard age, sex, prolactin level and psoriasis severity | 75 |

#### INTRODUCTION

Psoriasis is an inflammatory disease characterized by hyperproliferation of keratinocytes and accumulation of T cells in the epidermis and dermis of psoriatic lesions. Evidence for the central role of T helper (Th1) lymphocytes comes from both animal models of psoriasis and from trials of treatment with T-cell inhibitors. There is some evidence that psoriasis worsens at ages when hormonal changes such as puberty and menopause are taking place, and may also worsen or improve during pregnancy (*Gottlieb et al.*, 2002).

Prolactin (PRL), a neuropeptide secreted by the anterior pituitary gland, possesses a variety of physiological actions. It has been implicated as an important immunomodulator and exerts a proliferative effect in cultured human keratinocytes via specific receptors (*Dilmé-Carreras et al.*, 2011).

Prolactin is well recognised for its role(s) in mammary gland development and function. Moreover, its role in skin biology, including the potent regulation of human hair growth, is becoming clearer. Less widely appreciated, however, is the potential role of PRL in the pathobiology of psoriasis. While the relationship between PRL and psoriasis remains enigmatic, several recent publications on the PRL—psoriasis connection have demonstrated a reawakening of interest in this conundrum. We take the occasion of these reports to underscore the importance of dissecting the role(s) of PRL in the aetiopathology of psoriasis, not least since this may help to identify novel hormonal treatment strategies in its management (*Langan et al.*, *2012*).

The presence of PRL or at least a "PRL-like substance" has been reported in human sweat glands. Soon afterwards the PRL receptor was identified on human lymphocytes, and PRL itself was discovered to have local cytokine-like activities. Also,PRL is produced by lymphocytes, promotes the proliferation of B and T lymphocytes, increases the synthesis of the cytokines IFNγ and IL2 in Th1 lymphocytes, and suppresses T lymphocyte apoptosis. Today, it is clear that the human skin and hair follicles (HFs) are not only targets of receptor-mediated PRL bioregulation ,but also the sources of extrapituitary PRL production (*Langan et al.*, *2012*).

#### **AIM OF THIS WORK**

Assess the role of serum prolactin in pathogenesis of psoriasis and its correlation with severity and types of psoriasis.

# CHAPTER 1 PSORIASIS

Psoriasis is a common chronic inflammatory, immune-mediated disease that predominantly affects the skin and joints (*Griffiths and Barker 2007*). It is characterized by sharply demarcated, red, and scaly symmetrical plaques mainly on the elbow, knee or scalp (*Christophers*, 2001).

The course of the disease is characterized by relapses and remissions but the condition tends to persist throughout life.

Over years there have been many developments in the understanding of the genetic, molecular and cellular mechanisms that underlie these inflammatory processes and many effective treatments have been developed (*Mrowietz et al.*, 2011).

### **Epidemiology**

Psoriasis is found worldwide, although its frequency varies widely among different ethnic groups. According to published reports, prevalence in different populations varies from 0% to 11.8% (*Icen et al.*, 2009). The highest prevalence, observed in Norway, was obtained by relying on ascertainment by questionnaire without validation of positive responses (*Gudjonsson and Elder*, 2007).

With the exception of the Norwegian questionnaire study, the highest reported incidences in Europe have been in Denmark (2.9%) and the Faeroe Islands (2.8%), with the average for northern Europe being around 2%(*Gelfand et al.*, 2005).

Psoriasis is a disorder with a relatively high prevalence in the general population, mainly as a result of its chronicity and the absence of a cure. (*Naldi*, 2004).

It is obvious that mortality among psoriatic patients may be increased as compared with the general population in the late decades of life. The association of psoriasis with smoking and components of the metabolic syndrome may be responsible for such a trend (*Adams et al.*, 2006).

### Age at onset

Psoriasis may first appear at any age. It is most likely to appear between the ages of 15 and 30 years but its age of onset ranges from birth to the eighth or ninth decade (*Buntin et al.*, 1983).

The age of onset of psoriasis has been used for decades as an appropriate descriptor to define two subpopulations of psoriatic patients (types I and II) according to human leucocytic antigen (HLA) class I antigens (*Quiero et al., 2013*). However recently, No significant association was found between HLA-C alleles and family history, clinical findings or severity of the disease (*bahcetepe et al., 2013*).

#### Sex ratio

In general, there is no phenotypical difference between both sexes; however, significant female predominance can be seen in the palmoplantar pustular type (*Griffiths et al.*, 2004).

### **Predisposing factors**

#### 1. Genetic factors

There are about ten different psoriasis susceptibility genes; PSORS1-PSORS9 and PSORASI, located on the Human Leukocyte Antigen (HLA) class I allele, specifically HLA-Cw6. PSORS1 and PSORS2 are the major genetic determinant for psoriasis (*Tiilikainen et al., 1980; Tomfohrde et al., 1994; Capon et al., 2002; Speckman et al., 2003*).