Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt (Cairo Sector D6)

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

By

Ahmed Samir Sadek Ali M.B.B.CH. – Ain Shams University

Under Supervision of

Prof. Dr. Esam Mohamed Seleman Khedr

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Sahar Mahmoud Shawky

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University

2014

Acknowledgment

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Esam Mohamed Seleman Khedr, Professor of Internal Medicine and Nephrology for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Dr. Sahar Mahmod Shawky, Assistant Professor of Internal Medicine and Nephrology for her sincere efforts, fruitful encouragement.

Finally, I want to dedicate this work to all the members of my family because of their patience and support.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	vi
Introduction	1
Aim of the Work	4
Review of Literature	
Dialysis Overview	5
■ The Hemodialysis Prescription	25
■ Complications during Hemodialysis	46
 Kidney Disease Improving Global Outcor Clinical Practice Guidelines 	
Subjects and Methods	81
Results	86
Discussion	125
Summary and Conclusion	134
Recommendations	138
References	139
Arabic summary	

List of Tables

Table No.	Title Page No.
Table (1):	AAMI standard of water quality for dialysis
Table (2):	Gender and age distribution in the study population87
Table (3):	Different causes of ESRD in the study population88
Table (4):	Different comorbidities in the study population89
Table (5):	Work status in the study population91
Table (6):	Dependency status in the study population92
Table (7):	Frequency of HD sessions/week in the study population93
Table (8):	Duration of HD session in the study population94
Table (9):	The mean and range of dialysis period95
Table (10):	Sponsoring status in the study population96
Table (11):	Type of vascular access in the study population97
Table (12):	Frequency of access failure in the study population98
Table (13):	The levels of Hemoglobin, MCV, and Iron study during the last 6 months covered by the study99
Table (14):	Hemoglobin category in the study population100
Table (15):	Serum ferritin category in the study population

List of Tables (Cont...)

Table No.	Title	Page No.
Table (16):	TSAT category in the study populati	on102
Table (17):	History of blood transfusion in the spopulation.	•
Table (18):	Type of ESA used by the spopulation	
Table (19):	History of iron injection in the spopulation	
Table (20):	History of adjuvant therapy in the spopulation	•
Table (21):	The levels of Calcium, phosphorus PTH during the last 6 months cov by the study	ered
Table (22):	Serum calcium levels in the spopulation	U
Table (23):	Serum phosphorus level in the spopulation	-
Table (24):	Serum calcium phosphorus producthe study population	
Table (25):	Serum PTH levels in the spopulation	U
Table (26):	Type of phosphorus binders used by study population	
Table (27):	History of use of vitamin D supplem	ent113
Table (28):	Use of calcimimitic in study popula and its dose	
Table (29):	Types of complications during session in the study population	
Table (30):	Viral status in the study popula (HCV)	

List of Tables (Cont...)

Table No.	Title	Page No.
Table (31):	Type of dialysate used in the st	
Table (32):	Concentration of dialysate sodium usin the study population	
Table (33):	Concentration of dialysate potass used in the study population	
Table (34):	Concentration of dialysate calcium usin the study population	
Table (35):	Concentration of dialysate magnes used in the study population	
Table (36):	The mean value of kt/v in st	U
Table (37):	Dialyzer model, type and steriliza used in study population	tion

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Mechanisms of solutes remov	
	hemodialysis	
Figure (2):	Components and loop of	
T' (a).	treatment for hemodialysisGender distribution in the	35
Figure (3):		
Figure (4):	population Different causes of ESRD in the	81
rigure (4).	population	
Figure (5):	Different comorbidities in the	
riguic (o)	population	•
Figure (6):	Work status in the study population	
Figure (7):	Dependancy status in the	
_	population	92
Figure (8):	Frequency of HD sessions/week	in the
	study population	
Figure (9):	Duration of HD session in the	
(1.a)	population	94
Figure (10):	Sponsoring status in the	study
E: (11):	population	96
Figure (11):	Type of vascular access in the population	
Figure (12):	Frequency of access failure in the	
116010 (12)	population	
Figure (13):	Hemoglobin category in the	
	population	
Figure (14):	Serum Ferritin levels in the	study
	population	
Figure (15):	TSAT Category in the study popul	
Figure (16):	History of blood transfusion in the	
T: (4 =):	Population	
Figure (17):	Type of ESA used by the	
	population	104

List of Figures (Cont...)

Fig. No.	Title Page	No.
Figure (18):	History of iron injection in the study	
Figure (19):	population	
Figure (20):	Serum calcium levels in the study population	
Figure (21):	Serum phosphorus level in the study population	
Figure (22):	Serum calcium phosphorus product in the study population	
Figure (23):	Serum PTH levels in the study population	
Figure (24):	Type of phosphorus binder used by the study population	
Figure (25):	History of use vitamin D supplement	
Figure (26):	Use of calcimimitic in study population	
Figure (27):	and its dose Types of complications during HD session in the study population	
Figure (28):	Viral status in the study population	
Figure (29):	Type of dialysate used in the study	
	population	
Figure (30):	Concentration of dialysate Sodium used	
Figure (31):	in the study population Concentration of dialysate potassium	110
riguro (01)	used in the study population	119
Figure (32):	Concentration of dialysate calcium used	
Figure (33):	in the study population	
Figure (34): Figure (35):	used in the study population	123

List of Abbreviations

Fig. No.	Abb.
AAMI	Association for the Advancement of Medical Instrumentation
AVF	Arteriovenous fistula
AVG	Arteriovenous graft
CBC	Complete blood count
CKD	Chronic kidney diseases
CMB	Calcium mass balance
D Ca	Dialysate calcium concentration
D/I	Deionizer
DOPPS	Dialysis Outcomes and Practice Patterns Study
eKt/V	Equilibrated Kt/V index
ESA	Erythropoiesis-stimulating agent
ESRD	End-stage renal disease
GFR	Glomerular filtration rate
HD	Hemodialysis
HDF	Hemodiafiltration
HF	Hemofiltration
iCA	Ionized calcium
IFN	Interferon-gamma
K\DOQ I	Kidney Foundation Kidney Disease Outcome Quality Initiative
Ko	Transfer coefficient
KoA	Transfer area coefficient

List of Abbreviations (Cont...)

Fig. No. Abb.

LMWH	.Low-molecular-weight heparin
MDRD	.Modification of Diet in Renal Disease
MI	.Myocardial infarction
PTH	parathyroid hormone
Qb	.Blood flow
Qd	.Dialysate flow
R/O	.Reverse osmosis
S	.Sieving coefficient
spKt/V	.Single-pool Kt/V
TMP	.Transmembrane pressure
TNF	.Tumor necrosis factor-alfa
TSAT	.Serum transferrin saturation
URR	.Urea Reduction Ratio
HDUs	. Hemodialysis units

RCTs..... Randomized controlled trials

Introduction

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%–40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited.

In recent years, specific clinical guidelines have been developed to optimize the quality of anemia management secondary to chronic kidney diseases (CKD). As a result, the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K\DOQ I) guidelines and the Renal-European Dialysis and Transplantation Association best practice guidelines have been published in USA & Europe. Therefore; clinical practice guidance help individual physician and physicians as group to improve their clinical performance and thus raise standard of patient care towards optimum levels, They may also help to insure that all institution provide an equally good base line standard of care (*Cameron*, 1999).

Guidelines practiced on anemia and actual practices are much different with different places and patients

1

according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured (Locatelli et al., 2004).

Dialysis Outcomes and **Practice Patterns** Study variation (DOPPS) has observed a large in anemia The management among different countries. main hemoglobin concentration in hemodialysis patients varied widely across the studied countries ranging between 8g/dl to 11g/dl. The percentage of prevalent hemodialysis patient receiving erythropoietin stimulating agent increased from 75% to 83%. The percentage of HD patient receiving iron varies greatly among DOPPS countries range from 38% to 89%, (Locatelli et al., 2004).

There are challenges in implanting clinical guidelines in medical practice. Overall DOPPS data which show that, despite the availability of practice guidelines for treatment of renal anemia, wider variation in anemia management exists as gap between what is recommended by the guidelines and what is accomplished in every day clinical practice. Compliance with clinical guidelines is importance indicator of quality and efficacy of patient care at the same time their adaptation in

clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice (Cameron, 1999).

${f A}$ IM OF THE ${f W}$ ORK

- 1. To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription (K/DIGO 2010), stressing on anemia, bone disease management and adequacy of dialysis.
- 2. Statement of the current status of dialysis patient in Egypt (questionnaire)