

Ain Shams University Faculty of Science

Radiation Copolymerization of Micro and Nano Size Polymers and Their Applications in Waste Water Decontamination.

Thesis submitted for

M.Sc. Degree of Science (Nuclear Physics)

By

Reem Mohammed Abdel Kreem

Supervised By

Prof. Dr. Mona Mohammed Abdel Latif Mohsen

Prof. of (Nuclear – Solid) Physics, Faculty of Science, Ain-Shams University.

Prof. Dr. Ehsan Abdel-Haleam Gomaa

Prof. of Nuclear Physics, Faculty of Science, Ain Shams University.

Prof. Dr. Nabila Ahmed Mazaid

Prof. of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy of Authority.

Ain Shams University Faculty of Science

APPROVAL SHEET

Title of the M.Sc. Thesis

Radiation Copolymerization of Micro and Nano Size Polymers and Their Applications in Waste Water Decontamination.

Name of the Candidate Reem Mohammed Abdel Kreem

<u>Supervisors</u>	(<u>Signature</u>)
Prof. Dr. Mona Mohamed Abdel Latif Mohsen	()
Physics Department,	
Faculty of Science,	
Ain Shams University.	
Prof. Dr. Ehsan Abdel- Haleam Gomma	()
Physics Department,	
Faculty of Science,	
Ain Shams University.	
Prof.Dr.Nabila Ahmed Mazaid	()
Chemistry Department,	
National Center for Radiation Research and Techn	nology,
Atomic Energy of Authority.	

Name: Reem Mohammed Abdel Kreem

Degree: Master

Department: Physics – Nuclear Physics

Faculty: Science

University: Ain Shams University

Graduation Date: 2011

Registration Date: 2014

Grant Year: 2016

Acknowledgement

First praising to my god, Allah who led me through this work sustains me with the power and will to do this work.

Praise is to **my god**, **Allah** who guided me to do this work, and in no way could I have been guided, unless **Allah** has guided me.

My very deep gratitude goes to Prof.Dr. Salah Yaseen El-Bakry, chairman of the physics department, for his interest, support and encouragement.

I wish to express my deep thanks and gratitude to **Prof.Dr. Mona Mohammed Mohsen**, professor of (Nuclear- Solid) Physics in **Physics Department**, Faculty of Science, Ain-Shams University, for her supervision, fruitful discussions in reviewing the manuscript and guidance, which had a major impact in the completion of this work.

I would like to express my deep gratitude to **Prof.Dr.Ehsan Abdel-Haleam Gomaa**, Professor of Nuclear Physics in **Physics Department**, Faculty of Science, Ain-Shams University, for her supervision, great efforts, and continuous help during the preparation of this thesis.

It is my pleasure to express deep gratitude and sincere appreciation to **Prof.Dr.Nabila Ahmed Mazaid**, **Prof of Radiation Chemistry in Polymer Chemistry Department**, National Center for Radiation Research and Technology, Atomic Energy of Authority for her supervision, and encouragement during the experimental work.

I wish to express my deep thanks for my father, my mother and my sisters (Doaa, Marwa, Ragda and Shrook) and for my best friends (Sara Mahmoud, Mannar Ahmed, Aya Bahaa, Hadeel Omar and Dr. Amina Youssif).

Contents

Acknowledg	gement	I
List of Figur	res	VII
List of Table	e	XIII
List of Abbr	reviation	XVI
Abstract		XV
1 Introduct	tion and Literature review	1
1.1 Water p	pollution	1
1.2 Deconta	amination processes	1
1.2.1 Chem	mical precipitation	1
1.2.2 Elect	trolytic recovery or electro-winning	2
1.2.3 Ion ea	exchange	2
1.2.4 Adso	orption on new adsorption	2
1.3 Polymer	ers	3
	of irradiation on polymers	
	gels	
· C	site materials	
1.7 Nanocon	mposite hydrogels	6
1.8 Structur	re of clays	7
1.9 Modifica	ation of clay layers	8
1.10 Polyme	er/clay nanocomposite structures	10
1.11 Phase s	separation	10
1.11.1 Interc	calated structure	11
1.11.2 Exfol	liated structure	11

1.12 I	Literature Review
1.13	The objective of the work
2 The	oretical background19
2.1 B	asic principles of positron annihilation 19
2.1.1	Positron
2.1.2	The annihilation process
2.1.3	Interaction of positron with matter20
2.1.4	Positronium formation
2.1.5	Positron annihilation lifetime theory
3.2 G	Iaterial 31 amma irradiation 31
	eparation of copolymers hydrogels
3.2.1	Preparation of polyvinyl alcohol / Acrylic acid (PVA/AAc) copolymer hydrogel
	(DMAEMA/AAc) copolymer hydrogel32
3.2.3	Preparation of sodium alginate / acrylamide (NaAlg/AAm) copolymer
	hydrogel
3.3 T	reatment of clay (OMMT)32
3.4 P	reparation of nanocomposite hydrogel (OMMT-PVA/AAc)32
3.5 Pi	reparation of buffer solutions of different pH's32
3.6 G	el determination in the hydrogels
3.7 Sv	welling measurements

3.8 K	inetic swelling	34
3.9 Sp	ectroscopic analysis	35
3.9.1	FT-IR spectroscopy	35
3.9.2	x- ray diffraction(XRD)	35
3.9.3	Scanning Electron Microscope (SEM)	35
3.9.4	Transmation Electron Microscope (TEM)	36
3.9.5	Ultraviolet spectroscopy (UV)	36
3.10	Thermal gravemetrical analysis (TGA)	36
3.11	oH measurements	36
3.12	Positron annihilation lifetime spectroscopy (PAL)	37
3.12.1	Positron source	38
3.12.2	Pal instrumental set up	39
3.12.3	B Data analysis method	42
3.13 I	Metal uptake measurement	45
3.14 \$	Standard calibration curve	46
3.15	Factors affecting the adsorption amount	47
3.15.1	pH dependence of the adsorption amount	47
3.15.2	Effect of contact time	47
3.15.3	Effect of initial metal ion concentration	47
3.15.4	Effect of temperature on the adsorption amount	47
4 Res	ults & Discussion	
4.1 E	ffect or the preparation parameters on the hydrogels	48
4.1.1	Effect of composition on gel fraction % and swelling % for the	
	hydrogels	48
4.1.2	Effect of absorbed dose on gel fraction % and swelling % for the	
	different hydrogels	54

4.1.3	Effect of time on the swelling percent of hydrogel
4.1.4	Effect of pH on the swelling % of hydrogels
4.2 C	haracterization69
4.2.1	FTIR spectroscopy65
4.2.2	Positron annihilation lifetime spectroscopy
4.3 A	pplication of the prepared copolymers in metal – ion removal
fro	m aqueous solutions84
4.3.1	Effect of pH of metal ion solution85
4.3.2	Effect of contact time on adsorption amount9
4.3.3	Effect of initial concentration on metal uptake9
4.3.4	Effect of temperature on adsorption amount99
4.3.5	Scanning electron microscope99
4.3.6	Energy dispersive X- ray102
4.4 Sy	vnthesis of OMMT-PVA/AAc nanocomposite100
4.4.1	Effect of different organo nano clay (OMMT) ratios on gel fraction and
	swelling percent of hydrogel nanocomposite
4.4.2	Effect of different absorbed dose on gel fraction and swelling of the
	(OMMT-PVA/AAc) with 5.5 % OMMT
4.5 C	haracterization of the selected nanocomposite hydrogel111
4.5.1	FTIR analysis
4.5.2	Micro structure analysis by XRD and TEM11.
4.5.3	Free volume nanostructure by positron annihilation lifetime
	spectroscopy
4.5.4	Thermal gravimetrical analysis
4.6 A	pplication of the prepared hydrogel nanocomposite in heavy
me	tal uptake123
4.6.1	Effect of initial metal ion concentration on the adsorption amount of
	nanocomposite hydrogel

Table of Contents

4.6.2	Effect of treatment time on adsorption amount	.125
4.6.3	Effect of pH of the solution	126
4.6.4	Scanning Electron Microscope	127
4.6.5	Energy dispersive x- ray analysis	129
Con	nclusion	.131
Ref	erences	135

List of Figures

Figure 4-2 (a, b): Effect of copolymer composition on (a) the gel fraction, and
(b) swelling percent (%) of P (DMAEMA/AAc) hydrogel, absorbed dose
20kGy 50
Figure 4-3: Effect of AAm concentration on gel fraction and swelling % of
PAAm, absorbed dose 20 kGy51
Figure 4-4 (a, b): Effect of NaAlg amount on gel fraction and swelling % of
NaAlg/AAm hydrogel for different concentration of AAm, absorbed dose 20
kGy53
Figure 4-5 (a, b): Effect of absorbed dose on gel fraction % and swelling %
for (PVA/AAc) copolymer hydrogel
Figure 4-6 (a, b): Effect of absorbed dose on (a) gel fraction %, and (b)
swelling % of (80/20) DMAEMA/AAc hydrogel
Figure 4-7 (a, b): Effect of absorbed dose on (a) gel fraction and (b) swelling
% of P (NaAlg/AAm)
Figure 4-8: Effect of time on the swelling % of P (PVA/AAc), PAAc,
absorbed dose 20 kGy58
Figure 4-9: Effect of time on the degree of swelling of P (DMAEMA/AAc),
PDMAEMA and PAAc, absorbed dose 20 kGy
Figure 4-10: Effect of time on the degree of swelling of NaAlg/AAm, PAAm
hydrogels, absorbed dose 20 kGy
Figure 4-11: Effect of pH on the swelling % of PAAc and P (PVA/AAc),
absorbed dose 20 kGy61
Figure 4-12: Effect of pH on the swelling ability of P (DMAEMA/AAc),
PAAc and PDMAEMA. 63
Figure 4-13: Effect of pH on the swelling ratio of PAAm and P (NaAlg/AAm)
at dose 20 kGy
Figure 4-14: FTIR spectra of PVA, PAAc and P (PVA/AAc)66

Figure 4-15: FTIR spectra of DMAEMA, PAAc and P (DMAEMA/AAc).
68
Figure 4-16: FTIR spectrum of NaAlg, PAAm and P (NaAlg/AAm).
70
Figure 4-17: (a, b): The effect of different composition of F
(DMAEMA/AAc) hydrogel on the o-Ps lifetime components (τ_3 and I_3) and
free- volume parameters (V_h and F %)
Figure 4-18(a, b): The effect of absorbed dose on the o-Ps lifetime
components (τ_3 and I_3) and free- volume parameters (V_h and F %) of 80/20
DMAEMA/AAc hydrogel
Figure 4-19: Free- volume hole size distribution at different composition.
absorbed dose 20 kGy74
Figure 4-20: Free- volume hole size distribution at different absorbed dose in
DMAEMA/ AAc hydrogel
Figure 4-21(a, b): Correlation of swelling percent with free -volume
parameters (V _h and F %) as a function of DMAEMA/AAc composition.
76
Figure 4-22 (a, b): Correlation of swelling with free-volume parameters (V ₁
and F %) as a function of absorbed dose of 80/20 DMAEMA/AAc hydrogel
77
Figure 4-23: The effect of different NaAlg amount on the o-Ps lifetime τ_3 and
the size of free- volume (V_h) for different AAm concentrations79
Figure 4-24: The effect of different NaAlg amount on the o-Ps intensity (I ₃)
and the fraction of free- volume (F %) for different AAm concentrations.
80
Figure 4-25: Free- volume hole size distribution at NaAlg content in
NaAlg/20 % AAm hydrogels, absorbed dose 20 kGy
1 1941 115/ = 0 / 0 / 11 1111 11 1 91 0 5 0 10, 4 0 0 0 1 0 0 4 4 0 0 0 4 0 1 0 7 , , , , ,

Figure 4-26 (a,b): Correlation of swelling percent with free-volume
parameters (V $_{h}$ and F%) as a function of NaAlg content in NaAlg/20 $\%$ AAm
hydrogels at absorbed dose 20 kGy
Figure 4-27(a,b): Correlation of gel fraction percent with free-volume
parameters (V $_{h}$ and F%) as a function of NaAlg content in NaAlg/20 $\%$ AAm
hydrogels, absorbed dose 20 kGy
Figure 4-28: Effect of pH on the adsorption amount of different metal ions
for (a) PAAc, (b) P (PVA/AAc)
Figure 4-29 (a, b): Effect of pH on the adsorption amount of different metal
ions at metal concentration of 1000 ppm, for 24 hrs. for (a) PAAc, (b) P
(DMAEMA/AAc) hydrogels
Figure 4-30: Effect of pH on the adsorption amount of different metal ions
for (a) PAAm,(b) NaAlg/AAm hydrogel90
Figure 4-31(a, b): Effect of contact time on the adsorption of metal ions (a)
for PAAc and (b) for P (PVA/AAc)91
Figure 4-32 (a, b): Effect of treatment time on the adsorption amount of metal
ions (a) for PAAc and (b) for P (DMAEMA/AAc)92
Figure 4-33(a, b): Effect of treatment time on the amount of chelated metals
ions (a) AAm and (b) NaAlg/AAm93
Figure 4-34 (a, b): Effect of initial metal ion concentration on the adsorption
amount of PAAc and P (PVA/AAc) hydrogels respectively94
Figure 4-35 (a, b): Effect of initial metal ion concentration on adsorption
amount of (a) PAAc and (b) P (DMAEMA/AAc) hydrogels96
Figure 4-36 (a, b): Effect of initial metal ion concentration on adsorption
capacity of (a) AAm, and (b) P (NaAlg/AAm) hydrogels97
Figure 4-37: Effect of temperature on the adsorption amount of P
(PVA/AAc) P (DMAEMA/AAc) and P (NaAlg/AAm) 98

Figure 4-38(a, b, c): Surface morphology analysis of (PVA/AAc) hydrogel
(a) before metal uptake, (b) after loading with Cu^{+2} and (c) Co^{+2} metal ions
with solution concentration 1000 ppm and pH 5 after 24 hrs, absorbed dose 20
kGy99
Figure 4-39 (a, b, c): Surface morphology analysis of (80/20)
$DMAEMA/AAc\ hydrogel.\ (a)\ before\ metal\ uptake, (b)\ after\ loading\ with\ Cu^{+2}$
, and (c) \mbox{Co}^{+2} metal ions with solution concentration 1000 ppm and pH 5 after
24 hrs. absorbed dose 20 kGy
Figure 4-40 (a, b, c): surface morphology analysis of (NaAlg / AAm)
hydrogel (a) before metal uptake, (b) after loading with Cu^{+2} and (c) Co^{+2}
metal ions, with solution concentration 1000 ppm and pH 5 after 24 hrs,
absorbed dose 20 kGy101
Figure 4-41: Affinity of (a) PAAc and (b) PVA/AAc toward Cu^{+2} , Co^{+2} and
Ni ⁺² at 1000 ppm
$\textbf{Figure 4-42:} \ Affinity of (a) PAAc and (b) DMAEMA/AAc toward Cu^{+2}, Co^{+2}$
and Ni ⁺² at 1000 ppm
Figure 4-43: Affinity of PAAm (a) and NaAlg/AAm (b) toward Cu, Co and
Ni at 1000 ppm
Figure 4-44: Effect of different organoclay ratio on the gel fraction of the
nanocomposite hydrogel
Figure 4-45: Effect of different organoclay ratio on the swelling % of
nanocomposite hydrogel with absorbed dose 4kGy
Figure 4-46: Effect of absorbed dose on the gel fraction of nanocomposite
hydrogel with 5.5 % OMMT
Figure 4-47: Effect of absorbed dose on the swelling percent of
nanocomposite hydrogel with 5.5 % OMMT
Figure 4-48: FTIR spectra of hydrogel, organo nano clay and nanocomposite
hydrogel 112

Figure 4-49: XRD patterns of (a) OMMT, (b) PVA/AAc and (c) OMMT-
PVA/AAc113
Figure 4-50(a, b): TEM images of (a) PVA/AAc (b) OMMT-PVA/AAc, with
5.5% OMMT, absorbed dose 4 kGy
Figure 4-51(a,b): The effect of OMMT % on the o-Ps lifetime components
$(\tau_3 \text{ and } I_3)$ and free-volume parameters (V $_h$ and F %) for nanocomposite
hydrogel, absorbed dose 4kGy
Figure 4-52(a,b): The effect of absorbed dose on the o-Ps lifetime118
Figure 4-53(a,b): Correlation of swelling percent with free-volume
parameters (V_h and F%) as a function of OMMT %
Figure 4-54: TGA thermograms of PVA/AAc hydrogel and OMMT-
$PVA/AAc \ nanocomposite \ hydrogel \ and \ those \ adsorbed \ with \ Cu^{+2} \ metal \ ions,$
absorbed dose 4 kGy
Figure 4-55(a, b): Effect of initial metal ion concentration of adsorption
amount of different metals onto (a) hydrogel and (b) nanocomposite hydrogel.
Figure 4-56(a, b): Effect of contact time of adsorption amount for different
metals onto (a) hydrogel and (b) nanocomposite hydrogel
Figure 4-57: Effect of pH of the metal solution on adsorption amount of
different metals onto (a) hydrogel and (b) nanocomposite hydrogel 126
Figure 4-58 (a, b, c, d, e): Surface morphology analysis (a) hydrogel, (b)
nanocomposite hydrogel with (5.5 %) OMMT (c) nanocomposite hydrogel
after adsorption of $Cu^{+2},\ (c)\ Co^{+2}$, (d) Ni^{+2} metal ions with solution
concentration 100 ppm and after 24 hrs
Figure 4-59: Affinity of (a) PVA/AAc and (b) OMMT-PVA/AAc toward
Cu^{+2} , Co^{+2} and Ni^{+2} at 1000 ppm. 129