INHERITANCE OF NEMATODE RESISTANCE IN SOME CUCUMBER CULTIVARS

By

EMAN BASSUNY ABD EL-SALAM EL-REMALY

B.Sc. Agric. Sci. (Vegetable Crops), Fac. Agric., Cairo Univ., 2003

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

In

Agricultural Sciences (Vegetable Crops)

Department of Vegetable Faculty of Agriculture Cairo University EGYPT

2009

APPROVAL SHEET

INHERITANCE OF NEMATODE RESISTANCE IN SOME CUCUMBER CULTIVARS

M.Sc. Thesis
In
Agric. Sci. (Vegetable Crops)
By

EMAN BASSUNY ABD EL-SALAM IBRAHUIM EL-REMALY

B.Sc. Agric. Sci. (Vegetable Crops), Fac. Agric., Cairo Univ., Egypt, 2003

Approval Committee

Dr. MOHAMED EMAM RAGAB Professor of Vegetable Crops, Fac. Agric., Ain Shams University
Dr. AHMED AHMED OSMAN
Professor of Nematology, Fac. Agric., Cairo University
Dr. MOHAMED MOHAMED SHAHEEN
Associate Professor of Vegetable Crops, Fac. Agric., Cairo University
Dr. AHMED HASSAN KHEREBA
Professor of Vegetable Crops, Fac. Agric., Cairo University

Date: 3 / 9 / 2009

SUPERVISION SHEET

INHERITANCE OF NEMATODE RESISTANCE IN SOME CUCUMBER CULTIVARS

M.Sc. Thesis

In Agric. Sci. (Vegetable Crops)

 $\mathbf{B}\mathbf{v}$

EMAN BASSUNY ABD EL-SALAM EL-REMALY B.Sc. Agric. Sci. (Vegetable Crops), Fac. Agric., Cairo Univ., 2003

SUPERVISION COMMITTEE

Dr. AHMED HASSAN KHEREBA Professor of Vegetable Crops, Fac. Agric., Cairo University

Dr. MOHAMED MOHAMED SHAHEEN Associate Professor of Vegetable Crops, Fac. Agric., Cairo University

Dr. YOUSSOF TALAT EL-LITHY Head Research of Vegetable Crops, Hort. Inst., Agriculture Research Center Name of Candidate: Eman Bassuny Abd EL-Salam Degree: M.Sc.

Title of Thesis: Inheritance of nematode resistance in some

cucumber cultivars

Supervisors: Dr. Ahmed Hassan Khereba,

Dr. Mohamed Shaheen

Dr. Yousof Talat EL-Lithy

Department: Vegetable Crops

Branch: Approval: 3 / 9 /2009

ABSTRACT

This work was done during the period from 2005 to 2008 to study the inheritance of resistance to root-knot nematode disease and some horticultural characters in some cucumber (*Cucumis sativus* L.) and horned cucumber (*Cucumis metuliferus*) cross. The experiments included the evaluation of nine cucumber genotypes and commercial variety Beit alpha in addition to their crosses.

Depending on the evaluation of resistance to *Meloidogyne spp*. experiments were done on the parental genotypes Mineu (Lines 3 and 6), PI 482452 (Line 7 and Line 8), Southern pickler (Line 9) were resistant and Beit alpha was susceptible .Five F_1 hybrids (Beit alpha \times Mineu L_3 , Beit alpha \times Mineu L_6 , Beit alpha \times PI 482452 L_7 , Beit alpha \times PI 482452 L_8 , Beit alpha \times Southern pickler L_9) were evaluated for root-knot nematode resistance in addition to vegetative characters, fruit characters, yield component and Genetic studies.

The results showed that Beit alpha \times PI 482452 L_7 F_1 hybrids had high significant values in most studied horticulture characters, in addition to nematode resistance.

Key words: *Cucumis sativus*, Cucumber, *Meloidogyne incognita*, Root knot nematodes, Resistance, Inheritance, and Horticultural characters.

DEDICATION

I dedicate this work to whom my heart felt thanks; to my Friends for their patience and help, as well as to my parents, brothers and sister for all the support they lovely offered along the period of my post graduation.

ACKNOWLEDGEMENT

I wish to express my sincere thanks, deepest gratitude and appreciation to $\mathbf{Dr.}$ Ahmed Hassan Khereba Professor of vegetable crops, Faculty of Agriculture, Cairo University for supervision, continued assistance and his guidance through the course of study and revision the manuscript of this thesis. Sincere thanks to $\mathbf{Dr.}$ Mohamed Mohamed Shaheen, Associate Professor of vegetable crops, Faculty of Agriculture, Cairo University for sharing in supervision.

I would also like to express my sincere thanks and appreciations to Dr. Yousof T.EL-Lithy Head Research of vegetable crops, Horticulture Research Institute, Agriculture Research Center for his supervision, valuable guidance, continuous advice and help during the course of this work and writing of the manuscript.

Special thanks and deep appreciation to **Dr. Ahmed Ahmed Osman**, professor of Nematodolgy, Faculty of Agriculture, Cairo university for his tangible efforts, facilities and guidance through out the time of nematode experimental studies, investigation, reviewing and presentation of data to be in good shape and meaning.

Sincere thanks to **Dr. Abd Elmiged Ali Abd Elmiged**, Head Research of Flora L Phytotaxonomy Dept., Horticulture Research Institute, Agriculture Research Center for his tangible efforts, through out the time of cytology experimental study.

Grateful appreciation is also extended to all staff members of Vegetable and Nematology Department, Faculty of Agriculture, Cairo University. And vegetable research department, Horticulture Research Institute, Agriculture Research Center

Special deep appreciation is given to my father, my mother, my brothers and my sister. Also I feel deeply grateful to my dear country Egypt.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Evaluation of resistance to root-knot nematode in genotypes	5
2. Evaluation of some horticultural characters.	12
3. Inheritance of resistance to root-knot nematode.	21
4. Inheritance of some horticultural characters.	23
MATERIALS AND METHODS	47
RESULTS AND DISCUSSION	59
1. Evaluation of resistance to root-knot nematode,	59
Meloidogyne incognita in genotypes under pot condition	
a. Reaction of some cucumber inbred lines to resistance to root	59
knot nematode, Meloidogyne incognita under pot condition.	
b. Reaction of new hybrids and their lines to resistance to root	63
knot nematode, <i>Meloidogyne incognita</i> under pot condition.	
2. Evaluation of resistance to root-knot nematode,	66
Meloidogyne incognita in genotypes under field condition	
a. Reaction of some cucumber inbred lines to resistance to root	66
knot nematode, Meloidogyne incognita under filed condition.	
b. Reaction of new hybrids and their lines to resistance to root	72
knot nematode, Meloidogyne incognita under filed condition.	
3. Evaluation of some horticultural characters.	80
a. Vegetative characters	80
b. Yield and its components	83
c. Fruit characters	87
4. Inheritance of resistance to root-knot nematode	90
a. Gall index	92
b. Egg mass number	94
c. Gall number	96
5. Inheritance of some horticultural characters	98
a. Vegetative characters	98
b. Flowering characters	109
c. Yield and its components	113
d. Fruit characters	116
SUMMARY	137
REFERENCES	145
ARABIC SUMMARY	

LISTT OF TABLES

No.	Title	Page
1.	Chromosome numbers in two different species	58
 3. 	Reaction of cucumber inbred lines and check variety (Bei alpha) for resistance to root-knot nematode, <i>Meloidogyne incognita</i> under pot experiment condition	61
4.	Reaction of cucumber inbred lines and check variety for resistance to root-knot nematode, <i>Meloidogyne incognita</i> under field condition.	67
5.	Comparison of cucumber inbred lines and their hybrids with the susceptible check variety (B.A) for resistance to root-knot nematode, <i>Meloidogyne incognita</i> under field	~.4
6.	Vegetative growth characters for inbred lines, (B.A)	74
υ.	variety and their F ₁ 's hybrid	81
7.	Early yield and total yield of inbred lines, (B.A) variety, and their F ₁ 's hybrid	85
8.	Fruit traits for inbred lines, (B.A) variety, and their F ₁ 's	
	hybrids	88
9.	Segregation for resistance (utilizing both gall index and number of egg masses) to <i>Meloidogyne incognita</i> in progenies from crosses between susceptible <i>Cucumis sativus</i> Beit alpha and resistant <i>Cucumis metuliferus</i> L ₇	91
10.	Frequency distribution for Gall index of P ₁ , P ₂ , F ₁ , F ₂ ,	
	BC_1 and BC_2 of the cross Beit alpha \times L_7 .	93
11.	Quantitative genetic parameter Gall index to root-knot in the cross Beit alpha \times L ₇	93
12.	Frequency distribution of Egg masses number of P ₁ , P ₂ ,	
10	F_1 , F_2 , BC_1 and BC_2 of the cross Beit alpha \times L_7	95
13.	Quantitative genetic parameter Egg masses number to root-knot in the cross Beit alpha \times L ₇	95

T T	
	Λ
Τ.4	v.

	Title	Page
14.	Frequency distribution of Gall number of P ₁ , P ₂ , F ₁ , F ₂ ,	
	BC ₁ and BC ₂ of the cross Beit alpha \times L ₇	97
15.	Quantitative genetic parameter Gall number to root-knot	
	in the cross Beit alpha \times L ₇	97
16.	Frequency distribution of Main stem length (cm) of P ₁ ,	100
	P_2 , F_1 , F_2 , BC_1 and BC_2 of the cross Beit alpha \times L_7	
17.	Quantitative genetic parameter for Main stem length in	
	the cross Beit alpha \times L ₇	100
18.	Frequency distribution of Internodes length (cm) of P ₁ ,	102
	P_2 , F_1 , F_2 , BC_1 and BC_2 of the cross Beit alpha \times L_7	
19.	Quantitative genetic parameter for Internodes length (cm)	102
	in the cross Beit alpha \times L ₇	
20.	Frequency distribution of Number of branches of P ₁ , P ₂ ,	104
	F_1 , F_2 , BC_1 and BC_2 of the cross Beit alpha \times L_7	
21.	Quantitative genetic parameter for Number of brunches in	104
	the cross Beit alpha \times L ₇	
22.	Frequency distribution of Plant fresh weight (gm) of P ₁ ,	106
	P_2 , F_1 , F_2 , BC_1 and BC_2 of the cross Beit alpha \times L_7	
23.	Quantitative genetic parameter of Plant fresh weight in	106
	the cross Beit alpha \times L ₇	
24.	Frequency distribution of Leaf area (cm ²) of P ₁ , P ₂ , F ₁ , F ₂ ,	400
25	BC_1 and BC_2 of the cross Beit alpha \times L_7	108
25.	Quantitative genetic parameter for Leaf area in the cross	400
26	Beit alpha × L ₇	108
26.	Frequency distribution of number of Days to first female	
	flower anthesis of P_1 , P_2 , F_1 , F_2 , BC_1 and BC_2 of the cross	110
27	Beit alpha × L ₇	118
27.	Quantitative genetic parameter for number of Days to	120
28.	first female flower anthesis in the cross Beit alpha \times L ₇ Frequency distribution of number of female flowers /	120
40.	node P_1 , P_2 , F_1 , F_2 , BC_1 and BC_2 of the cross Beit alpha \times	
	hode $\Gamma_1, \Gamma_2, \Gamma_1, \Gamma_2$, BC ₁ and BC ₂ of the cross Bert alpha \wedge L_7	121
29.	Quantitative genetic parameter for number of female	141
<i>□7</i> •	flowers /node in the cross Beit alpha \times L ₇	123
30.	Frequency distribution of Total yield per plant (kg) of P_1 ,	143
50.	P2, F1, F2, BC1 and BC ₂ of the cross Beit alpha \times L ₇	125
	$12, 11, 12, DC1$ and DC_2 of the closs DCR alpha $\wedge L_7$	143

No.	Title	Page
31.	Quantitative genetic parameter for Total yield per plant in	
	the cross Beit alpha \times L ₇	125
32.	Frequency distribution of Fruit length (cm) of P ₁ , P ₂ , F ₁ ,	
	F_2 , BC_1 and BC_2 of the cross Beit alpha \times L_7	128
33.	Quantitative genetic parameter fruit length in the cross	
	Beit alpha × L ₇	130
34.	Frequency distribution of Fruit Diameter (cm) of P ₁ , P ₂ ,	
	F_1 , F_2 , BC_1 and BC_2 of the cross Beit alpha \times L_7	132
35.	Quantitative genetic parameter fruit Diameter in the cross	
	Beit alpha \times L_7	132
36.	Frequency distribution of Average fruit weight (gm) of	
	P_1 , P_2 , F_1 , F_2 , BC_1 and BC_2 of the cross Beit alpha \times L_7	135
37.	Quantitative genetic parameter Average fruit weight in	
	the cross Beit alpha \times L ₇	137
38.	Characteristics of the chromosome complement of	
	Cucumis sativus as Beit alpha	141
39.	Characteristics of the chromosome complement of	
	Cucumis metuliferus as PI 482452	142

LIST OF FIGURES

No	Title	Page
1.	Gall index (%) of cucumber genotypes under pot test condition	62
2.	Gall number of cucumber genotypes under pot test condition.	62
3.	Egg mass number of cucumber genotypes under pot test condition	62
4.	Gall index (%) of cucumber hybrids and their inbred lines	65
5.	Gall number of cucumber hybrids and their inbred lines	65
6.	Egg mass number of cucumber hybrids and their inbred lines	65
7.	Gall index (%) of cucumber genotypes under field test condition	68
8.	Gall numbers of cucumber genotypes under field test condition	68
9.	Egg mass numbers of cucumber genotypes under field test condition	68
10.	Root system of cucumber (L ₁) genotypes	69
11.	Root system of cucumber (L ₂) genotypes	69
12.	Root system of cucumber (L ₃) genotypes	69
13.	Root system of cucumber (L ₄) genotypes	70
14.	Root system of cucumber (L ₅) genotypes	70
15.	Root system of cucumber (L ₆) genotypes	70
16.	Root system of cucumber (L ₇) genotypes	71

No	Title	Page
17.	Root system of cucumber (L ₈) genotypes	71
18.	Root system of cucumber (L ₉) genotypes	71
19.	Root system of cucumber (P _C) genotypes	72
20.	Gall index % of hybrids and their inbred lines under field test	75
21.	Gall numbers of hybrids and their inbred lines under field test	75
22.	Egg mass numbers of hybrids and their inbred lines under field test	75
23.	Root system of cucumber hybrid $(L_3 \times P_C)$	76
24.	Root system of cucumber hybrid $(L_6 \times P_C)$	76
25.	Root system of cucumber hybrid $(L_7 \times P_C)$	76
26.	Root system of cucumber hybrid $(L_8 \times P_C)$	77
27.	Root system of cucumber hybrid (L ₉ ×P _C)	77
28.	Root system of cucumber (Beit alpha)	77
29.	Root system of hybrid $(L_3 \times P_C)$ and their parents (L_3, P_C)	78
30.	Root system of hybrid $(L_6 \times P_C)$ and their parents (L_6, P_C)	78
31.	Root system of hybrid $(L_7 \times P_C)$ and their parents (L_7, P_C)	78
32.	Root system of hybrid ($L_8 \times P_C$) and their parents (L_8 , P_C)	79
33.	Root system of hybrid $(L_9 \times P_C)$ and their parents (L_9, P_C)	79
34.	Main stem length (cm) of inbred lines and their hybrids	82
35.	Plant fresh weight (gm) of inbred lines and their hybrids	82

No	Title	Page
36.	Number of branches of inbred lines and their hybrids	82
37.	Leaf area (cm ²) of inbred lines and their hybrids	83
38.	Early fruit number of inbred lines and their hybrids	85
39.	Early fruit weight (gm) of inbred lines and their hybrids	86
40.	Total fruit number of inbred lines and their hybrids	86
41.	Total fruit weight (gm) of inbred lines and their hybrids	86
42.	Fruit of cucumber hybrid $L_7 \times P_C$	87
43.	Fruit length (cm) of inbred lines and their hybrids	89
44.	Fruit diameter (cm) of inbred lines and their hybrids	89
45.	Fruit weight (gm) of inbred lines and their hybrids	89

INTRODU CTION

Cucumber, *Cucumis sativus* L. is a member of the *Cucurbitaceae*; it is considered one of the most important vegetable crops in Egypt and world wide.

Since cucumber is one of the oldest cultivated vegetable crops, it has been known in history for over five thousand years and probably originated in India (wehner *et al.*, 1991).

The common use of cucumber is as food. The fruits of cucumber are eaten as fresh and as pickles in the immature stage. Products derived from cucumber are being widely used in cosmetics and medical concern.

Cucumber is usually grown in open fields, under polyethylene low tunnels and greenhouses. the total production in open fields was 448521 tons produced from 47246 fed, which yielded about (productivity) 9.49ton/fed¹ while the production in greenhouse was 43764 tons produced from 3442067 m², productivity, 12.71 kg/m² in 2006. Cucumber is cultivated in greenhouses as well as in open fields, under diversity of climates (temperate and tropical area).

Cucumber grown under different cultivation circumstances are subjected to attack by many pathogens (Bacteria, fungi, viruses and parasitic nematodes).

^{1.}Department of Agriculture and Economics and Statistics, Ministry of Agriculture A.R.E. 2008.

The important role of plant-parasitic nematodes as pests of world crops has been clearly established over the last fifty years. It has been estimated that some 10 % of world crop production is lost as a result of plant nematode damage.

Root-knot nematodes, *Meloidogyne ssp.* are among the most destructive nematodes, indigenous in tropical and sub tropical areas including Egypt, causing serious noticeable threat to vegetables and field crops resulting in yield losses in quality and quantity.

The commonest four species are *Meloidogyne incognita*, *M. javanica*, *M. arenaria* and *M. hapla* attacking world wide crop plants belonging to many different plant families. The wide –host range of these nematodes and compatibility to warm environment makes the practical control with the conventional methods too difficult.

This genus significantly damages the horticultural crops and reduced the total production in several areas of the world as well. The impact of these organisms on global agriculture is becoming more important with an increased need for greater crop yield to feed the populations of both developing and developed countries.

At present, control of plant-parasitic nematodes relies on application of non fumigant nematicides to nematode-infested fields before or during planting, or crop rotation methods, or on use of resistant or tolerant plant varieties bred by conventional genetic methods.

Although each of these management strategies has some positive features, there are negative aspects that reduce their effectiveness and value