Comparison of four novel customized implant abutments fabricated by pressing technology

A thesis submitted to crown and bridge department, Faculty of Dentistry, Ain Shams University for the partial fulfillment of the doctoral degree requirements in Fixed Prosthodontics.

\mathbf{BY}

Marwa Mahmoud Emam

B.D.S (Ain Shams University, 2007)
M.Sc (Ain Shams University, 2013)
Assistant Lecturer of Fixed Prosthodontics.
Crown and Bridge department.
Faculty of Dentistry, Ain Shams University.

Supervisors

Dr/ Tarek Salah Morsi

Assistant Professor and Head of Fixed Prosthodontics,
Crown and Bridge department,
Faculty of Dentistry, Ain Shams University.

Dr/ Ayman Galal El Dimeery

Lecturer of Fixed Prosthodontics,

Crown and Bridge department,

Faculty of Dentistry, Ain Shams University.

Acknowledgement

I've always believed that writing the acknowledgement is harder than writing the whole thesis. There are so many great people that I want to thank and I am afraid there are no sufficient words to convey the level of gratitude I have for them.

My deepest gratitude is to my supervisor, Ass. Prof. Dr. Tarek Salah El Din Morsi for his guidance and encouragement over the years. He gave from his scientific knowledge, experience, effort and most of all his valuable time. I am grateful to his insightful comments and discussions that helped me develop and understand research protocol. I appreciate his unfailing attention to details. He was very tolerant and determined to see me through. He was such a wonderful motivation even when the road seemed tough for me. I will be always indebted to him. It was a great honor to work under his supervision.

I wish to express my sincere appreciation and gratitude to my supervisor, Dr. Ayman Galal El-Dimeery for years of mentorship, support and friendship. I have been amazingly fortunate to have him as a supervisor He made me believe I had so much courage and strength to preserve even when I felt lost myself. I am grateful to him for holding me to high research standards. His careful readings and countless revisions are the reason of conducting this research despite all difficulties. He has always been there to answer any questions and clear any doubts. He has set an example of excellence as a researcher, mentor, instructor and role model. I aspire to emulate him.

Personal appreciation and thanks to **Dr. Amina Mohamed Hamdy, Dr. Amr Saleh EL-Etreby** and **Dr. Marwa Mohamed Wahsh** for their support, kindness and continuous encouragement over the years.

I wish to extend my sincere gratitude to my brother Eng. Mostafa Mahmoud Emam for his time and effort drawing the diagrams used in this thesis. Also I can't forget the talented Dr. Karim tarek and Dr. Kareem Nagi for offering their amazing photography skills whenever asked.

I am forever thankful to those who make the good times better and the hard times easier Fatma Adel, Soha Osama, Sarah Mahanna, Hoda Sadek, Maha Salah, Heba Darwish, Menna Darwish, Noha Fayad, Nahla Hamed and Mai Mamdouh. They are like the stars, that I know they will be always there to shine when it goes dark. They are the family I chose for myself.

I wish to extend my deep and sincere gratitude to my uncle **Eng. Osama**Taha for always being there when things crash down. Your love and encouragement from the early start have always been the motive behind my persistence.

I also extend my heartfelt gratitude to my students who made me find out that all that time trying to inspire them and they are the ones ended up inspiring me.

Last but by no means least, my deepest gratitude goes to my family for their unconditional love and support throughout my life and my studies. I

am forever indebted to them for giving me the opportunities and experiences that have made me who I am. This journey would not have been possible if not for them, and I dedicate this achievement to them.

TABLE OF CONTENTS

Introduction	1
Review of Literature	3
Statement of the Problem	33
Aim of the Study	34
Materials and Methods	35
Results	83
Discussion	107
Summary and Conclusion	120
References	124
Arabic Summary	

LIST OF FIGURES

Fig 1: IPS e.max Press ingots LT
Fig 2: Sirona Ti Base, screw and scan body
Fig 3: Ultradent Porcelain etch (above), and Ultradent Silane (below) 37
Fig 4: TotalCem self etching self adhesive resin cement
Fig 5: Flowchart showing an overview of the study design CHAC:
Cemented hybrid abutment crown, CHA: Cemented hybrid abutment,
$PHAC: Pressed\ hybrid\ abutment\ crown,\ PHA:\ Pressed\ hybrid\ abutment. \dots 40$
Fig 6: Schematic drawing of HAC of an upper central incisor showing
structure composition and dimensions from proximal (left) and labial (right)
view: 1: Ti Base, 2: e.max abutment crown as single restoration
Fig 7: Schematic drawing of HA of an upper central incisor showing
structure composition and dimensions from proximal (left) and labial (right)
view: 1: Ti Base, 2: e.max hybrid abutment, 4: e.max allceramic crown 41
Fig 8: Implant replica
Fig 9: Alignment of implant replica with the surveyor
Fig 10: Steady insertion of the abutment-replica combination into the
doughy resin
Fig 11: Implant replica supported in tray resin
Fig 12: Schematic drawing of implant replica in the resin block
Fig 13: Stages of wax pattern buildup guided by the putty index 47
Fig 14: The putty indices for the waxed crown
$\textbf{Fig 15:} \ Completed \ wax \ pattern \ on \ a \ Ti \ base \ screwed \ to \ the \ implant \ analog 48$
Fig 16: The HAC wax pattern after margination with cervical wax
$\textbf{Fig 17:} \ \ \text{The sprued wax patterns of HACs (above) and HAs (below) attached}$
to the ring base with the knotted floss inside their screw channels 50
Fig 18: The investment ring before (left) and after setting and removing the
silicone ring (right)

Fig 19: The investment ring inside the preheating furnace	52
Fig 20: IPS Alox Plunger and separator	54
Fig 21: Dropping the e.max ingots into the investment ring	54
Fig 22: The investment ring in the furnace	55
Fig 23: Marking the separation line with an Alox Plunger	55
Fig 24: The investment ring separated according to Alox plunger length	56
Fig 25: The partially blasted HAC samples	56
Fig 26: Completely divested (HA) samples (left) and (HAC) samples	after
divesting and separating the sprues.	57
Fig 27: PICO-MARK water-soluble pressure indicating paint	58
Fig 28: Ti base painted with pressure indicating paint.	58
Fig 29: Optimum fit between the Ti base and the pressed restoration	59
Fig 30: Construction of crowns wax pattern guided by the putty index	60
Fig 31: Crowns finished, marked and ready for pressing	60
Fig 32: Torque wrench kit	61
Fig 33: Mounted Ti bases before and after air blasting	62
Fig 34: Treating HAC with HF acid.	63
Fig 35: Treating HAC with silane coupling agent	63
Fig 36: Injection of resin cemeent inside a HAC	64
Fig 37: The sample in the loading device	65
Fig 38: The cemented samples on their corresponding Ti bases;	HAC
(above) and HA (below).	66
Fig 39: Treating the bonded surfaces of HA with HF	67
Fig 40: Treating the bonded surfaces of the crown with HF	67
Fig 41: Treating the bonded surfaces of the crown with silane coupling	agent
	68
Fig 42: Curing the cement at crown margins for 40 seconds	69
Fig 43: Finished CHA sample with the crown bonded to the abutment	69

Fig 44: Dissembled finished PHAC sample
Fig 45: Screwed finished PHAC sample
Fig 46: Finished PHA samples ready for investing
Fig 47: The PHACs attached to the ring base ready for investing (above) and
after placing the silicon ring (below)
Fig 48: The P samples after pressing and divesting, HACs (above) and HAs
(below)
Fig 49: The PHAC samples after separation
Fig 50: PHACs in the Invex liquid
Fig 51: Polishing of the Ti base to remove the oxide layer
Fig 52: Finished PHACs
Fig 53: Screwing the samples to the mounted analogs with the torque wrench
77
Fig 54: Schematic drawing of the HAC (left) and HA (right) either cemented
or pressed ready for testing
Fig 55: The custom holder used to hold the samples during static load test
with the plastic cylinder inside (top view)
Fig 56: The custom holder used to hold the samples during static load test
showing the 30 degrees inclination (lateral view)
Fig 57: The loading cell
Fig 58: Universal testing machine
Fig 59: Bar chart showing fracture resistance mean values for all groups
separately (HAC: hybrid abutment crown, HA: hybrid abutment) 85
Fig 60: Line chart showing estimated marginal means of fracture load in
relation to the pressing techniques with different designs (HAC: hybrid
abutment crown, HA: hybrid abutment
Fig 61: Bar chart showing fracture resistance mean values of different
pressing techniques regardless restoration design

Fig 62: Bar chart showing fracture resistance mean values of restoration
design
Fig 63: Bar chart showing fracture resistance mean values of CHAC and
PHAC (CHAC: Cemented hybrid abutment crowns, PHAC: Pressed hybrid
abutment crowns)
Fig 64: Bar chart showing fracture resistance mean values of CHAC and
CHA (CHAC: Cemented hybrid abutment crowns, CHA: Cemented hybrid
abutment). 92
Fig 65: Bar chart showing fracture resistance mean values of CHAC and
PHA (CHAC: Cemented hybrid abutment crowns, PHA: Pressed hybrid
abutments)
Fig 66: Bar chart showing fracture resistance mean values of PHAC and
PHA (PHAC: Pressed hybrid abutment crowns, PHA: Pressed hybrid
abutment)
Fig 67: Bar chart showing fracture resistance mean values of PHAC and
CHA (PHAC: Pressed hybrid abutment crowns, CHA: Cemented hybrid
abutments). 95
Fig 68: Bar chart showing fracture resistance mean values of CHA and PHA
(CHA: Cemented hybrid abutments, PHA: Pressed hybrid abutments) 96
Fig 69: Pie chart representing the mode of failure of cemented HAC group.
97
Fig 70: Pie chart representing the mode of failure of pressed HAC group 97
Fig 71: Pie chart representing the mode of failure of cemented HA group. 98
Fig 72: Pie chart representing the mode of failure of pressed HA group 98
Fig 73: Pie chart representing the mode of failure of cemented group
regardless the design. 99
Fig 74: Pie chart representing the mode of failure of pressed group
regardless the design

Fig 75: Stacked column chart showing mode of failure of cemented and
pressed on groups
Fig 76: Pie chart representing the mode of failure of HAC group regardless
the technique
Fig 77: Pie chart representing the mode of failure of HA group regardless the
technique. 101
Fig 78: Stacked column chart showing mode of failure of cemented and
pressed group
Fig 79: A fragment of a CHAC sample showing the resin cement layer
attached to the surface
Fig 80: A fragment of a CHA sample showing the resin cement layer
attached to the surface
Fig 81: The Ti base used in CHAC sample showing almost clean surface
without resin cement attached to its surface
Fig 82: A fragment of a PHAC sample showing the discolored surface in
contact with the Ti base
Fig 83: The Ti base used in PHAC sample showing the discolored black
surface. 105
Fig 84: Sample showing fractured screw inside the Ti Base
Fig 85: Sample showing fractured screw inside the deformed implant replica
at 50X

LIST OF TABLES

Table. 1: List of materials:35
Table 2: Samples grouping 39
Table 3: Descriptive Statistics of fracture resistance of fracture resistance
results measured in Newton (N) for different fabrication techniques and
restoration designs. 84
Table 4: Two-Way ANOVA for the effect of pressing technique and
restoration design on the fracture resistance of custom hybrid abutment
restorations. 86
Table 5: Mean and standard deviation values of fracture resistance for
different techniques regardless the design type
Table 6: Mean and standard deviation values of fracture resistance for
different designs regardless the pressing technique
Table 7: One way ANOVA test
Table 8: Results of the Tukey HSD Post Hoc test 90
Table 9: Results of the Tukey HSD Post Hoc test for fracture resistance
mean values of CHAC and PHAC (CHAC: Cemented hybrid abutment
crowns, PHAC: Pressed hybrid abutment crowns)
Table 10: Results of the Tukey HSD Post Hoc test for fracture resistance
mean values of CHAC and CHA (CHAC: Cemented hybrid abutment
crowns, CHA: Cemented hybrid abutment)
Table 11: Results of the Tukey HSD Post Hoc test for fracture resistance
mean values of CHAC and PHA (CHAC: Cemented hybrid abutment
crowns, PHA: Pressed hybrid abutments)
Table 12: Results of the Tukey HSD Post Hoc test for fracture resistance
mean values of PHAC and PHA (PHAC: Pressed hybrid abutment crowns,
PHA: Pressed hybrid abutment). 94

Table 13: Results of the Tukey HSD Post Hoc test for fracture resistance
mean values of PHAC and CHA (PHAC: Pressed hybrid abutment crowns,
CHA: Cemented hybrid abutments)
Table 14: Results of the Tukey HSD Post Hoc test for fracture resistance
mean values of CHA and PHA (CHA: Cemented hybrid abutments, PHA
Pressed hybrid abutments)