

Ain Shams University
Faculty of Science
Chemistry Department

Diesel Fuel Improvement Through Photocatalytic Desulphurization Process Induced by Different Radiation Sources

Thesis Submitted for

Ph.D. Degree of Science in Chemistry

Bv

Asmaa Said Morshedy Mohammed

Egyptian Petroleum Research Institute

To

Chemistry Department
Faculty of Science
Ain Shams University
Cairo, Egypt

2016

Ain Shams University
Faculty of Science
Chemistry Department

Diesel Fuel Improvement Through Photocatalytic Desulphurization Process Induced by Different Radiation Sources

Thesis Submitted for Ph.D. Degree of Science in Chemistry

By

Asmaa Said Morshedy Mohammed

To

Department of Chemistry-Faculty of Science
Ain Shams University

Supervised by

Prof. Dr. Ahmed Ismail Hashem Prof. Dr. Omar Ibrahim Sif El-din

Prof. of Organic Chemistry, Prof. of Petroleum refining,

Faculty of Science-Ain Shams University. Egyptian Petroleum Research Institute.

Prof. Dr. Sahar Mahmoud Tawfik Dr. Ahmed Metwally EL Naggar

Prof. of Petroleum refining, Researcher of Petroleum refining,

Egyptian Petroleum Research Institute. Egyptian Petroleum Research Institute.

Head of Chemistry Department

Prof. Dr. Ibrahim H.A. Badr

2016

Ain Shams University
Faculty of Science
Chemistry Department

Approval Sheet

Diesel Fuel Improvement Through Photocatalytic Desulphurization Process Induced by Different Radiation Sources

By

Asmaa Said Morshedy Mohammed

This Thesis for ph.D. Degree has Approved by:

Prof. Dr. Ahmed Ismail Hashem

Prof. of Organic Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. Omar Ibrahim Sif El-din

 $Prof.\ of\ Petroleum\ refining,\ Egyptian\ Petroleum\ Research\ Institute.$

Prof. Dr. Abdo Othman Abd El-Hameed

Prof. of Organic Chemistry, Faculty of Science, Cairo University

Prof. Dr. Adel Abd El-Hady Nassar

Prof. of Organic Chemistry, Faculty of Science, Al-manoufia University.

(الجمد الله الذي هدانا لهذا وما

كنا لنمتدى لولا ان مدانا الله)

CONTENTS

LIST OF FIGURES	
LIST OF TABLES	
LIST OF LIST OF ABBREVIATIONS	
AIM OF THE WORK	
ABSTRACT	
INTRODUCTION	
CHAPTER (1) LITRATURE RAVIEW	
1.1 DIESEL FUEL	1
1.1.1 Composition of Diesel Fuels	
1.1.2 Specification Requirements of Diesel Fuels	. 3
1.1.3 Environmental Problems and Health Hazards	
Caused by Sulfur in Diesel Fuel	
1.2 DESULFURIZATION PROCESSES	. 11
1.2.1 Conventional Desulfurization	
(Hydrodesulfurization)	11
1.2.2 Alternative Processes for Deep Desulfurization	
of Diesel Fuel	
1.2.2.1 Oxidative Desulfurization	
1.2.2.2 Ultrasound-Assisted Oxidative Desulfurization	
1.2.2.3 Desulfurization by Adsorption	
1.2.2.4 Extractive Desulfurization	
1.2.2.5 Biodesulfurization (BDS)	
1.2.2.6 Photocatalytic Oxidative Desulfurization	
1.3 PHOTOCATALYSIS	
1.3.1 Types of Photocatalysis	22
1.3.2 Electronic and Optical Properties of Heterogeneous	
Semiconductors	
1.3.3 The Electronic Structure of Semiconductors	
1.3.4 Ultraviolet and Visible Spectrometry	
1.3.5 Radiation Sources	34
1.4 PHOTOCATALYSIS IN THE DESULFURIZATION	
APPLICATION	
1.5 PHOTOCATALYTIC METAL OXIDES	38
1.6 IMPROVEMENT PHOTOCATALYTIC EFFICIENCY Of	
METAL OXIDES BY NANOSTRUCTURE GROWTH	
TECHNIQUES	. 46
CHAPTER (2) EXPERIMENTAL	
2.1 PLAN OF EXPERIMENTS	48
	70

CONTENTS

2.2 FEEDSTOCK	. 50
2.3 MATERIALS	. 51
2.4 PREPARATION OF DIFFERENT METAL OXIDES	. 52
2.4.1 Preparation of CdO & ZnO Nanoparticles by	
Precipitation Method	52
2.4.2 Preparation of CdO & ZnO Nanoparticles by	
Auto-ignition Method	. 53
2.4.3 Preparation of TiO ₂ Nanoparticles	. 54
2.5 CHARACTERIZATION OF THE PREPARED SAMPELS	. 57
2.5.1 Thermal Gravemetric Analysis	. 57
2.5.2 X-Ray Diffraction Analysis (XRD)	. 57
2.5.3 BET Surface Area Analysis	58
2.5.4 Scanning Electron Microscope (SEM)	
2.5.5 Transmission Electron Microscope (TEM)	59
2.5.6 UV/Vis Spectrophotometer	
2.5.7 Spectrofluorophotometer	. 59
2.5.8 Fourier Transform Infrared Spectroscopy (FTIR)	60
2.6 PHOTOCATALYTIC ACTIVITY OF THE PREPARED	
SAMPELS	60
2.7 SOLVENT EXTRACTION PROCESS	62
2.7.1 Determination of Critical Solution Temperature	
(C.S.T)	62
2.7.2 Solvent Extraction procedure	62
2.8 ANALYSIS	64
2.8.1 Hydrocarbon Component Analysis	
2.8.2 Hydrogen Peroxide Concentration	
2.8.3 Sulfur Content	
2.9 RADIATION SOURCES	. 65
CHAPTER (3) RESULTS AND DISCUSSION	
3.1 THERMAL GRAVEMETRIC ANALYSIS	
3.2 X-RAY DIFFRACTION ANALYSIS	
3.3 SURFACE IDENTIFICATION	
3.4 MORPHOLOLGICAL STREUCTURES	
3.5 UV-VISIBLE ABSORPTION	
3.6 CATALYSTS PHOTOLUMINANCESCENCE (PL)	
3.7 CATALYST PHOTOCATALYTIC ACTIVITY	
3.7.1 Influence of The Radiation Source.	. 99
3.7.2 Influence of Catalyst Dosage	101
3.7.3 Effect of Reaction Time	103
3.7.4 Sulfur Removal Via Catalytic Photochemical Reaction	104
3 & SOI VENT FYTRACTION PROCESS	110

CONTENTS

3.8.1 Direct Solvent Extraction Process of Feedstock	113
	116
	119
3.9 EFFECT OF THE OPERTIONAL TIME OF	11/
IRRADIATION ON SULFUR REMOVAL% AT OPTIMUM	
	119
	121
3.11 SPENT CATALYST	126
- · · · · · · · · - ·	126
	127
3.12 PROCESS ECONOMIZATION UNDER SUN	
IRRADIATION	130
3.13 COMPARATIVE DESULFURIZATION RATES BY	
CATALYST A-F	131
3.14 EFFECT OF AROMATIC CONTENT ON THE	
DESULFURIZATION PROCESS UNDER UV	
IRRADIATION	134
	144
REFRENCES	147
APPENDIX	
ARABIC SUMMARY	

Figure number	Page
Figure (1) : Simulated HDS of diesel to meet 15 and 0.1 ppm level on the basis of a conventional single-stage reactor, assuming 1.0 wt.% S in feed	13
Figure (2): Energy bands in solids: (a) insulator, (b) semiconductor and (c) conductor	26
Figure (3) : Position of Fermi level relative to VB and CB for (a) intrinsic, (b) n-type and (c) p-type semiconductors	30
Figure (4): Fundamental Photocatalysis	38
Figure (5): Wurtzite HCP "hexagonal close-pack" structure	43
Figure (6): Schematic Presentation of the Processing Sequence	49
Figure (7): Systematic diagram for precipitation method	53
Figure (8): Systematic diagram for auto-ignition method	54
Figure (9) : Systematic diagram for TiO ₂ nanoparticles preparations	56
Figure (10): Photocatalytic desulfurization set up fitted with	
irradiation source	61
Figure (11): Xenone Lamp 500W	66
Figure (12): Linear Halogen Lamp (LHL) 500W	67

Figure (13): Ultra-Violet lamp (UV) 110W	67
Figure (14a) : TGA & DTA curves of prepared Cd(OH) ₂ by precipitation and auto-ignition methods	69
Figure (14b) : TGA & DTA curves of prepared Zn(OH) ₂ by precipitation and auto-ignition methods	70
Figure (14c) : TGA & DTA curves of prepared Ti(OH) ₄ by precipitation method from different sources	71
Figure (15a): XRD patterns of CdO nanoparticles for catalysts A and B.	74
Figure (15b): XRD patterns of ZnO nanoparticles for catalysts C and D	75
Figure (15c) : XRD patterns of TiO ₂ nanoparticles for catalyst E and F	77
Figure (16) : Surface morphology via SEM image of the prepared CdO NPs catalysts (A and B)	83
Figure (17) : TEM micrographs of the prepared CdO NPs catalysts (A and B)	84
Figure (18) : Surface morphology via SEM image of the prepared ZnO NPs catalysts (C and D)	85

Figure (19) :	TEM micrographs of the prepared ZnO NPs catalysts	
	(C and D)	87
Figure (20):	Surface morphology via SEM image of the prepared	
	TiO ₂ NPs catalysts (E and F)	88
Figure (21):	TEM micrographs of the prepared TiO ₂ NPs catalysts	
	(E and F)	89
Figure (22):	Electronic absorption of UV-visible spectra of CdO	
	NPs catalysts (A and B)	90
Figure (23) :	Plot of $(\alpha h \upsilon)^2 - h \upsilon$ of CdO NPs catalysts (A and B)	91
Figure (24):	Electronic absorption of UV-visible spectra of ZnO	
	NPs catalysts (C and D)	92
Figure (25) :	Plot of $(\alpha h \upsilon)^2 - h \upsilon$ of ZnO NPs catalysts (C and D)	93
Figure (26):	Electronic absorption of UV-visible spectra of TiO ₂	
	NPs catalysts (E and F)	94
Figure (27) :	Plot of $(\alpha h \upsilon)^2$ – $h \upsilon$ of TiO_2 NPs catalysts (E and F)	95
Figure (28a)	: Room temperature PL spectra of CdO NPs	
	catalysts (A and B)	96
Figure (28b)	: Room temperature PL spectra of ZnO NPs	
	catalysts (C and D)	96

Figure (28c)	: Room temperature PL spectra of TiO ₂ NPs	
	catalysts (E and F)	97
Figure (29) :	Effect of the light source on the sulfur removal%	100
Figure (30):	Effect of CdO-to-feed dosage on the sulfur removal%	102
Figure (31) :	Effect of the operational time of irradiation on Sulfur removal%	103
Figure (32):	Effect of H ₂ O ₂ strength on sulfur removal%	
	at H ₂ O ₂ /Feed ratio(1/1)	106
Figure (33):	Effect of H ₂ O ₂ to Feed ratio on sulfur removal%	107
Figure (34) :	Effect of the ratios of H ₂ O ₂ /AcOH on the sulfur removal%	109
Figure (35):	Effect of Solvent/Feed ratio on the sulfur removal%	
	after photo-catalytic reaction	112
	Effect of Solvent/Feed ratio on the sulfur removal% after catalytic photochemical reaction	113
. ,	Effect of Solvent/Feed ratio on the sulfur removal% for the Feedstock	114
	Comparing the sulfur removal % in the produced diesel fuels at the various processes of	
	desulfurization before and after extraction	11

Figure (39): Effect of the operational time on sulfur removal % at	
optimum conditions (LHL; CdO 7g/L Feed; H ₂ O ₂ 48%	
strength: Acetic acid: Feed 1:1:1; S/F ratio 4:1)	120
Figure (40): Main concept of the photocatalytic reaction	121
Figure (41a): FTIR spectrum of diesel fuel (Feedstock)	124
Figure (41b): FTIR spectrum of diesel fuel after catalytic	
photochemical reaction	125
Figure (41c): FTIR spectrum of diesel fuel after catalytic	
photochemical process followed by solvent	
extraction	125
Figure (42): The structural and morphological characteristics of the	
spent catalyst	127
Figure (43): XRD patterns of the regenerated catalyst	129
Figure (44): Sulfur removal% by catalysts (A-F) under	
different radiation sources at optimum conditions	
after Catalytic photochemical process followed by	
solvent extraction	132
Figure (45): Effect of catalysts type under UV irradiation on	
the sulfur removal%	136
Figure (46) : Effect of TiO ₂ -to-Feed dosage on the sulfur removal%	137

Figure (47) : 1	Effect of operational time of irradiation using TiO ₂	
((catalyst E) on sulfur removal%	138
	Effect of oxidizing agent using TiO ₂ (catalyst E) on sulfur removal%	139
Figure (49) : 1	Effect of Solvent/Feed ratio on the sulfur removal%.	
((UV lamps, TiO ₂ dosage 5g/L second feed, 2h,	
	second feed:H ₂ O ₂ :AcOH 1:1:1)	140
Figure (50):	ASTM distillation curve of diesel fuel and final	
	product obtained by using TiO2 and second	
	feed under UV-lamps at optimum conditions	143

LIST OF TABLES

Table nur	nber	Page
Table (1):	Band gap energies corresponding to radiation wavelength required for excitation of various semiconductors	40
Table (2) :	General characteristics of the diesel fuel fraction	50
Table (3):	Chemical reagents.	51
Table (4) :	Symbols of the prepared metal oxides nanoparticles	57
Table (5):	Surface characteristics and particles sizes values of the Prepared catalysts	78
Table (6):	Effect of solvent extraction on the desulfurization of diesel fuel before and after oxidation under LHL using acetonitrile at S/F ratio 4/1	117
Table (7) :	General characteristics of the modified diesel fuel	135
Table (8) :	Physico-Chemical Characteristics of the diesel fuel and the final product obtained by using TiO ₂ under UV-lamps at optimum conditions	142

ACKNOWLEDGMENT

First of all, I should express my deep thanks to **Allah**, with his grace this work was accomplished.

The author wishes to express her deepest gratitude to **Prof. Dr. Ahmed Ismail Hashem,** Professor of Organic Chemistry, Faculty of Science, Ain Shams University for his kind supervision, guidance and sponsoring the thesis to the university.

I would like to express my special appreciation and thanks to my advisor Prof. Dr. Omar Ibrahim Sif El-din, Professor of Petroleum refining, Refining Department, Egyptian Petroleum Research Institute (EPRI). He has been a tremendous mentor for me. I would like to thank him for encouraging my research and for allowing me to grow as a research scientist. I have learned many things since I became Dr. Omar's student. He spent time instructing me how to think, write thesis and how to search literature. Also for his valuable discussion that made this work possible outcome in this form. His fatherhood guidance helped me throughout the time of research and in writing this thesis. I could not have