

Potential neuroprotective effect of Androst-5-ene-3β, 17β-diol (ADIOL) against experimentally-induced Parkinson's disease in rats

A thesis submitted for partial fulfillment of Doctor of Philosophy degree in Pharmaceutical Sciences (Pharmacology and Toxicology)

By Rania Mohamed Kamel Hassan Mohamed Salama

M.SC. in Pharmaceutical Sciences, Ain Shams University, Egypt, 2012 Assistant Lecturer of Pharmacology and Toxicology Faculty of Pharmacy, Misr International University

Under the supervision of

Prof. Dr. Ahmed M. Abdel-tawab

Professor of Pharmacology Faculty of Medicine, Ain Shams University

Dr. Mona F. Schaalan

Dr. Nevine B. Soliman

Acting Head of Clinical Pharmacy
Department
Assistant Professor of Biochemistry
Faculty of Pharmacy, Misr International
University

Assistant Professor of Histology Faculty of Medicine, Ain Shams University

Dr. Mariane G. Tadros

Assistant Professor of Pharmacology and Toxicology Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy - Ain Shams University 2016

Examination Board Approval Sheet

Name of Candidate

Rania Mohamed Kamel Hassan Mohamed Salama

Title of Thesis

Potential neuroprotective effect of Androst-5-ene-3 β , 17 β -diol (ADIOL) against experimentally-induced Parkinson's disease in rats

Submitted to Faculty of Pharmacy
Ain Shams University
Department of Pharmacology and Toxicology

Approved by the committee in charge:

•	Prof. Ahmed Mohey-eldin Abdel-tawab	
	Professor of Pharmacology	
	Faculty of Medicine	
	Ain Shams University	
•	Prof. Gouda Kamel Abdel Bary	
	Dean of Faculty of Pharmacy	
	Professor of Pharmacology and Toxicology	
	Azhar University "Boys"	
•	Prof. Sawsan Aboul-Fotouh El-Said	
	Professor of Pharmacology	
	Faculty of Medicine	
	Ain Shams University	
•	Assistant Prof. Mariane George Tadros	
	Assistant Professor of Pharmacology and Toxicology	
	Faculty of Pharmacy	
	Ain Shams University	
	Acting Head of Pharmacology and	l Toxicology Department
	Assistant Prof. Sama	
Da	ate: 12 / 6 / 2016	

Pre-requisite Postgraduate Courses

Besides the work presented in the thesis, the candidate has attended prerequisite postgraduate courses including the following topics:

Special Courses:

- Clinical Pharmacology
- Pharmacology
- Selected topics
- Clinical Toxicology

The candidate has successfully passed the examination in these courses and the comprehensive exam with general grade "*Excellent*".

Acting Head of Pharmacology and Toxicology Department Faculty of Pharmacy, Ain Shams University

Assistant Prof. Samar Saad-eldin Azab

Acknowledgements

First and foremost, all praise to Almighty Allah who gave me courage and patience to carry out this work. At the end of my thesis, I would like to take this opportunity to show my gratitude to those who have assisted me in a myriad of ways.

I would like to express my sincere gratitude to my supervisor Prof. Ahmed Abdel-tawab whose attention to every detail and academic precision provided me the necessary direction and focus for my study.

I am also extremely indebted to my supervisor Assistant Prof. Mona Schaalan whose constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research.

I would also like to thank my supervisor Assistant Prof. Nevine Soliman for her guidance, understanding and priceless advices throughout the duration of this study and the preparation of this thesis.

I would also like to thank my supervisor Assistant Prof. Mariane Tadros who helped in every step of the way. She never hesitated to provide relentless support and motivation at all times. Her timely and efficient contribution helped me shape this into its final form.

Besides my supervisors, I gratefully acknowledge Prof. Amani Khalifa for her encouragement and personal attention. My thanks are due to her valuable suggestions and constant support throughout my PHD journey.

A big thank to my brother for his support and encouragement. I wish to thank my parents-in-law for supporting me throughout this phase of life and for helping me in the successful completion of this thesis.

I'm forever indebted to my late mother, who raised me, supported me, taught me and loved me. Although she is not here to give me strength and support, I always feel her presence that used to urge me to strive to achieve my goals in life.

Father... Today I completed my PHD thesis, fulfilling your wish before your departure two years ago. I cannot directly address to you anymore, but deeply in my mind I always acknowledge and remember you. I wish your soul roots in peace and solace in the heaven. Dad, this is for you.

Rania Salama

التأثير الواقي المحتمل للخلايا العصبية لدواء أندروستينديول (أديول) ضد مرض الشلل الرعاش المُحدَث تجريبياً في الجرذان

رسالة مقدمة لإستكمال متطلبات الحصول على درجة الدكتوراة في العلوم الصيدلية (الأدوية والسموم)

مقدمة من رانيا محمد كامل حسن محمد سلامة

ماجستير العلوم الصيدلية، جامعة عين شمس، مصر، ٢٠١٢ مدرس مساعد بقسم الأدوية والسموم كلية الصيدلة، جامعة مصر الدولية

تحت إشراف

أ.د/ أحمد محي الدين عبد التواب أستاذ الأدوية، كلية الطب، جامعة عين شمس

أ.م/ نيفين بهاء الدين سليمان أستاذ مساعد الأنسجة، كلية الطب، جامعة عين شمس أ.م/ منى فرج شعلان القائم بأعمال رئيس قسم الصيدلة الإكلينيكية أستاذ مساعد الكيمياء الحيوية، كلية الصيدلة، جامعة مصر الدولية

أ.م/ ماريان جورج تادرس أمر ماريان جورج تادرس أستاذ مساعد الأدوية و السموم، كلية الصيدلة، جامعة عين شمس

كلية الصيدلة، جامعة عين شمس (٢٠١٦)

Contents

		Page
•	List of Abbreviations	i
•	List of Figures	iv
•	List of Tables	i x
•	Abstract	
•	Literature Review	1
1.	Introduction to Parkinson's disease	1
	1.1. The history of Parkinson's disease	1
	1.2.Prevalence and epidemiology of Parkinson's disease	1
	1.2.1. The global burden of Parkinson's disease	1
	1.2.2. Parkinson's disease in Egypt.	3
	1.3. Clinical manifestations of Parkinson's disease	4
	1.4.Pathophysiology of Parkinson's disease	5
	1.5.Diagnosis of Parkinson's disease.	8
	1.6.Etiology of Parkinson's disease	10
	1.7.Pathogenesis of Parkinson's disease	13
	1.8.Pharmacological treatment of Parkinson's disease	20
	1.8.1. Currently available medications	20
	1.8.2. Future trend in the treatment of Parkinson's disease	23
2.	Animal models of Parkinson's disease	26
	2.1.Neurotoxin-induced models	26
	2.1.1. 6-Hydroxydopamine	26
	2.1.2. 1-methyl-1,2,3,6-tetrahydropyridine	27
	2.2.Pesticide/Herbicide-induced models	28
	2.2.1. Paraquat	28
	2.2.2. Rotenone	29
	2.3.Genetic models	31

3.	The drug used in the current study	
	Androst-5-ene-3β, 17β-diol	32
	3.1.Pharmacokinetics of Androst-5-ene-3β, 17β-diol	33
	3.2.Pharmacodynamics of Androst-5-ene-3β, 17β-diol	34
	3.2.1. The established mechanisms of Androst-5-ene-3β, 17β-diol	34
	3.2.2. The potential neuroprotective mechanism of Androst-5-ene-	-
	3β, 17β-diol	35
•	Aim of the work	39
•	Materials and Methods	41
I.	Materials	41
II.	Methods	48
1.	Experimental design.	48
2.	Behavioral tests	50
	2.1.Catalepsy test.	50
	2.2.Postural instability test.	51
	2.3.Open field test	52
3.	Biochemical parameters.	53
	3.1.Determination of dopamine and its metabolites	53
	3.2.Determination of adenosine triphosphate	62
	3.3.Determination of nuclear factor-kappa B	67
	3.4. Determination of inducible nitric oxide synthase, interleukin-6	
	and B-cell activating factor	70
	3.5.Determination of caspase-3.	75
	3.6.Determination of Bcl2-associated X protein	78
	3.7.Determination of B-cell lymphoma 2	81
	3.8. Determination of protein content.	84
4.	Histopathology and Immunohistochemistry	86
5.	Statistical Analysis.	88
•	Results	89

•	Discussion	148
•	Summary and Conclusions	159
•	References	164
•	Arabic Summary	196

List of Abbreviations

AD Alzheimer's disease

ADIOL Androst-5-ene-3β, 17β-diol

ANOVA Analysis of variance
ATP Adenosine triphosphate
BAFF B-cell activating factor
Bax Bcl2-associated X protein
BBB Blood-brain barrier
Bcl-2 B-cell lymphoma 2

BID BH3 interacting-domain death agonist

BSA Bovine serum albumin CCD Charge-coupled device

cDNA Complementary deoxyribonucleic acid C_{max} Maximum plasma concentration

CMC Carboxymethyl cellulose
CNS Central nervous system

COMT Catechol-O-methyltransferase

COMTI Catechol-O-methyltransferase inhibitor

 Δ CT Mean cycle threshold

ΔΔCT Comparative cycle threshold
 CtBP C-terminal binding protein
 C.V. Coefficient of variation

DA Dopamine

DAT Dopamine transporter
DDC Dopa decarboxylase

DDCI Dopa decarboxylase inhibitor

DHBA 3,4-Dihydroxybenzylamine hydrobromide

DHEA Dehydroepiandrosterone
DNA Deoxyribonucleic acid
DOPAC Dihydroxyphenylacetic acid

EAE Experimental auto-immune encephalomyelitis

ECD Electrochemical detection

EDTA Ethylenediaminetetraacetic acid ELISA Enzyme-linked immunosorbent assay

EM Electron microscopy
ER Estrogen receptor
ESC Embryonic stem cells

GADPH Glyceraldehyde-3-phosphate dehydrogenase

GSH Reduced glutathione
H&E Hematoxylin and eosin
H₂O₂ Hydrogen peroxide

HPLC High performance liquid chromatography

HRP Horseradish peroxidase

HSD Hydroxysteroid dehydrogenase

HVA Homovanillic acid

ICH International Conference on Harmonisation

IL Interleukin

IMP Inosine 5'-monophosphate iNOS Inducible nitric oxide synthase

i.p. IntraperitonealIQR Interquartile rangesIS Internal standardi.v. Intravenous

KCl Potassium chloride

KH₂PO₄ Monobasic potassium phosphate

KO knockout LB Lewy body

L-DOPA L-3,4-dihydroxyphenylalanine

LM Light microscopy
LN Lewy neurite
LOD Limit of detection
LOQ Limit of quantification
LPS lipopolysaccharide

LRRK 2 Leucine-rich repeat kinase-2

Maneb Manganese ethylene-1,2-bisdithiocarbamate

MAO Monoamine oxidase

MAOBI Monoamine oxidase-B inhibitor MPP+ 1-methyl-4-phenylpyridinium

mPTP mitochondrial permeability transition pore MPTP 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine

MS Multiple sclerosis

NADPH Nicotinamide adenine dinucleotide phosphate

NaOH Sodium hydroxide NE Norepinephrine

NF-κB Nuclear factor-kappa B

NINDS National Institute of Neurological Disorders and Stroke

NO Nitric oxide

Nrf2 Nuclear factor erythroid 2-related factor 2

O2 Superoxide
OD Optical density
6-OHDA 6-Hydroxydopamine
PBS Phosphate buffered saline
PD Parkinson's disease

PINK1 PTEN-induced putative kinase 1 rER Rough endoplasmic reticulum

RNA Ribonucleic acid

ROS Reactive oxygen species

RT-PCR Reverse transcription polymerase chain reaction

s.c. Subcutaneous
S.D. Standard deviation
SEO Sumy Electron Optics
SN Substantia nigra

SNpc Substantia nigra pars compacta
SNpr Substantia nigra pars reticulata
TEM Transmission electron microscope

TH Tyrosine hydroxylase
 TLR Toll-like receptor
 TMB Tetramethylbenzidine
 TNF-α Tumor necoris factor-alpha

List of Abbreviations

UCH-L1 Ubiquitin C-terminal hydrolase L1

UKPDSBB United Kingdom Parkinson Disease Society Brain Bank

UPS Ubiquitin-proteasome system

USP 30-NF 25 United States Pharmacopeia and National Formulary

UV Ultra-violet

List of Figures

Figure		Page
Figure i:	Clinical manifestations and time course of PD progression.	5
Figure ii:	Neuropathology of PD.	7
Figure iii:	Different pathways to neurodegeneration in PD.	16
Figure iv:	Inflammation in PD.	19
Figure v:	Schematic Illustration of sites of action of available medications for the treatment of motor symptoms of PD.	22
Figure vi:	Mechanisms of actions of different toxins used to induce PD.	30
Figure vii:	Chemical structure of Androst-5-ene-3 β , 17 β -diol (ADIOL).	32
Figure viii:	Direct metabolism of DHEA by 17β-HSD produces ADIOL.	33
Figure ix:	Anti-inflammatory effect of ADIOL via $ER\beta$ -mediated repression.	38
Figure x:	Performing the postural instability test.	51
Figure 1:	Standard curve of DA	57
Figure 2:	Standard curve of DOPAC	59
Figure 3:	Standard curve of HVA	61
Figure 4:	Standard curve of ATP	66
Figure 5:	Standard curve of NF-κB	69
Figure 6:	Standard curve of caspase-3	77

Figure 7:	Standard curve of Bax	80
Figure 8:	Standard curve of Bcl-2	83
Figure 9:	Standard curve of protein content	85
Figure 10:	Box plots for catalepsy test (A) Bar and (B) Grid , carried out in groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	92
Figure 11:	Box plots for postural instability test carried out in groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	93
Figure 12:	Box plots for open field test , showing (A) Number of squares, (B) Number of stops, (C) Activity index, (D) Rearing frequency, (E) Active sitting and (F) Inactive sitting of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	97
Figure 13:	Percentage change of (A) DA concentration, its metabolites; (B) DOPAC and (C) HVA, and (D) DA turnover in the striatum of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	101

Figure 14:	Percentage change of ATP concentration in the (A) striatum and (B) SN of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	104
Figure 15:	Percentage change of NF-kB concentration in the (A) striatum and (B) SN of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	107
Figure 16:	Relative gene expression of (A) iNOS , (B) IL-6 and (C) BAFF in the striatum of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	111
Figure 17:	Relative gene expression of (A) iNOS , (B) IL-6 and (C) BAFF in the SN of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	115
Figure 18:	Percentage change in the levels of (A) Caspase-3, (B) Bax, (C) Bcl-2 and (D) Bax/Bcl-2 ratio in the striatum of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30	119

days.

Figure 19:	Percentage change in the levels of (A) Caspase-3, (B) Bax, (C) Bcl-2 and (D) Bax/Bcl-2 ratio in the SN of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	123
Figure 20:	Micrograph showing H&E stained-sections of striatal neurons in rats.	126
Figure 21:	Percentage change of the mean number of viable neurons in the striatum of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	128
Figure 22:	Micrograph showing H&E stained-sections of nigral neurons in rats.	131
Figure 23:	Percentage change of the mean number of viable neurons in the SNpc of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	133
Figure 24:	Micrograph showing α-synuclein immunoreactivity in the SNpc of rats.	136
Figure 25:	Percentage change of the α-synuclein density in the SNpc of groups of rats receiving vehicle (control), ADIOL (3.5 mg/kg/day; s.c.), rotenone (1.5 mg/kg/day; i.p.) and ADIOL (0.35, 3.5 and 35 mg/kg/day; s.c.) in addition to rotenone for 30 days.	138