Evaluation of Myocardial Contraction Fraction as an Echocardiographic Predictor of Functional Capacity in Patients with Heart Failure with Reduced Ejection Fraction

Thesis

Submitted for Partial Fulfillment of Master Degree of Cardiology

By

Hassan Ahmed Addow

M.B.B.Ch, University of Science and Technology-Yemen

Under Supervision of

Prof. Dr. Ramy Raymond Elias

Assistant Professor of Cardiology-Cardiology Department Faculty of Medicine – Ain Shams University-Egypt

Dr. Yasser Alaa Eldin Mahmoud

Lecturer of Cardiology-Cardiology Department
Faculty of Medicine – Ain Shams University-Egypt

Faculty of Medicine
Ain Shams University
2017

تقييم النسبة الانقباضية لعضلة القلب بالموجات فوق الصوتية كمؤشر تنبؤى للقدرة الوظيفية في المرضي الذين يعانون من ضعف عضلة القلب

رسالة

توطئت للحصول على درجة الماجستير في أمراض القلب

مقرمة من

الطبيب/حسن أحمد عدو

بكالوريوس الطب والجراحة - جامعة العلوم والتكنولوجيا - اليمن

قت إشراف

أ.د/ رامي ريمون إلياس

أستاذ مساعد — أمراض القلب والأوعية الدموية كلية الطب — جامعة عين شمس

دكتور/ ياسر علاء الدين محمود

مدرس أمراض القلب والأوعية الدموية كلية الطب – جامعة عين شمس كلية الطب جامعة عين شمس جامعة عين شمس 2017

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ramy Raymond**Clias, Assistant Professor of Cardiology-Cardiology

Department Faculty of Medicine, Ain Shams University,

Egypt, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Vasser Alaa Eldin**Mahmoud, Lecturer of Cardiology-Cardiology

Department, Faculty of Medicine, Ain Shams University,

Egypt, for his kind care, continuous supervision,

valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients who participated in this study.

Hassan Ahmed Addow

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	
Introduction	
Aim of the Work	
Review of Literature	
 Etiology of Heart failure and Pathophysiology 	5
Symptoms and signs	
Functional Capacity in Heart Failure	
Three-dimensional Echocardiography	
Subjects and Methods	
Results	
Discussion	
Study Limitations	
Summary	
Conclusion and Recommendation	
References	
Master Table1	
Arabic Summary	104

List of Tables

Table No.	Title	Page No.
Table (1):	The etiology of HF	7
Table (2):	Definition of heart failure with prese	
14516 (2).	(HFpEF), mid-range (HFmrEF) and red	
	ejection fraction (HFrEF)	
Table (3):	NYHA functional classification	10
Table (4):	The ACC/AHA stages of heart failure	10
Table (5):	Sysmptoms and signs of heart failure	
Table (6):	The BORG scale	
Table (7):	Comparison of demographic data and	
	factors between Cases (HF) and con	
	(Normal)	
Table (8):	Comparison of two dimensi	
, ,	Echocardiographic Parameters betw	
	Cases (HF) and control	67
Table (9):	Shows that there is a statistically signifi-	icant
	higher degree of mitral and Tricuspid v	
	regurgitation in HF patients than in co	
	group (P < 0.001, P=0.007) respectively	
Table (10):	Comparison of 3D-Echocardiogra	-
	Parameters between Cases and control	
Table (11):	Shows that there is a highly statistic	•
	significant difference between HF group	
-11 (10)	control group as regard their MCF	
Table (12):	Shows statistically significantly differ	
	between MCF, NYHA functional c	•
	demographic data, risk factors and clipparameters	
Table (19).	ualametels	14
1 anie (13):	-	
	Shows correlation between MCF Minne	esota
Table (14).	-	esota I 75

List of Cables (Cont...)

Table No.	Title	Page	No.
Table (15):	Shows relation NYHA class demographic data and echocardiogr parameters	aphic	79
Table (16):	Relation a minnesota score demographic data, echocardiogr	aphic	01
Table (17):	parameters	and	
Table (18):	Shows that there is a significant relabetween Minnesota and higher degree and TR (p=0.012, 0.003 respectively)	of PR	87
Table (19):	Shows correlation between 6MWTD, BMI and BSA	age,	
Table (20):	Shows correlation between 6MWTD echocardiographic parameters		89
	Correlation between 2D echo parameterswith 3D echo parameters		
Table (22):	Linear regression analysis for 6MWD		92
Table (23):	Shows classification of 6MWD into gro & Group B	_	93
Table (24):	Comparison between both groups as reddemographic data & risk factor	_	95
Table (25):	Comparison between both groups, as reecho cardio graphic parameters	_	96
Table (26):	Comparison between both groups as revalvular regurgitation	_	97
Table (27):	A Cut-off Value of Myocardial contra Fractional (MCF) Shortening and bet both groups		99

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Activation of neurohormonal syst	
Figure (2):	Effects of sympathetic nervous activation	•
Figure (3):	Cardiac and cellular remodelic response to haemodynamic overload	•
Figure (4):	Patterns of LV Remodeling based or	n EDV 20
Figure (5):	Minnesota living with heart questionnaire (MLHFQ)	
Figure (6):	Cardiopulmoanry exercise testing	25
Figure (7):	Examples of Three-Dime Echocardiographic Analysis Using	g Mesh
Figure (8):	and Slices. The measurement of aortic valve three-dimensional trans esopechocardiography	area by phageal
Figure (9):	Assessment of the relationship of and right coronary artery ostia	the left
Figure (10):	Elliptically-shaped atrial septal de before and (b) after closure with us device	efect (a) mbrella
Figure (11):	Two-dimensional guided M echocardiogram of the LV in para short axis view at papillary muscle	mode isternal
Figure (12):	Measurement of left atrial diameter from M-mode at level of aortic valve	r (LAD)
Figure (13):	Two dimensional measurements for fraction calculation using the method of discs (modified Simpson apical four-chamber at end diastole a systole	biplane rule) in and end

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (14):	Left panel shows pulsed wave D mitral inflow with sample vo mitral leaflets tips in a normal pa	olume at
Figure (15):	Measurements of left atrial voluthe biplane method of discs	
Figure (16):	Measurement of tricuspid annusystolic excursion	_
Figure (17):	Apical 4chamber view showing acquisition (117).	
Figure (18):	Shows 4D Auto LVQ	58
Figure (19):	Apical 4champer view showing all	ignment 58
Figure (20):	Apical view showing one point basal area and one point at the ap	
Figure (21):	Volume waveform displaying ESV, EF, HR, SV, CO, SV and SP	•
Figure (22):	Volume curve showing relation I ESV.	
Figure (23):	Displaying results 4D LV Mass	61
Figure (24):	Shows a comparison of EF (No between Cases (HF) and control (No between Cases (HF))	•
Figure (25):	Shows a comparison of E/e (P<0.001) TAPSE (P=0.028) between and control	een Cases
Figure (26):	Shows a comparison of MR betwee (HF) and control (P<0.001)	een Cases
Figure (27):	Shows a comparison of TR betwee (HF) and control (P=0.007)	
Figure (28):	Shows a comparison of LV mass is 3D), LV Mass-3D between Cases control (P<0.001)	(HF) and

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (29):	Shows a comparison of MCF Cases and control P (< 0.001)	
Figure (30):	A plot chart shows a significant correlation between MCF and M score.	innesota
Figure (31):	A plot chart shows a significant correlation between MCF and 6r meter.	positive nin d in
Figure (32):	Relation between Minnesota sci	ore and
Figure (33):	Relation between Minnesota score functional class.	
Figure (34):	A plot chart shows a significant correlation between Minnesota so 6min d in meter.	core and
Figure (35):	A plot chart shows a significant correlation between Minnesota sc LVMI.	-
Figure (36):	A plot chart shows a significant correlation between Minnesota sc LV mass	ore, and
Figure (37):	A plot chart shows a significant correlation between Minnesota so LVI 3D	positive core and
Figure (38):	Show a significant relation Minnesota and TR.	between
Figure (39):	Shows a significant relation Minnesota and PR	
Figure (40):	A plot chart shows a significant correlation between 6MWTD a	negative and LV

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (41):	A plot chart shows a significant correlation between 6MWTD and 1	•
Figure (42):	Pie chart shows comparison patients who walked less than a than 300M	and more
Figure (43):	Shows a significant positive between 6min d in meter and MR	
Figure (44):	Cut-off Value of Myocardial con Fractional (MCF) Shortening and Group a Subjects and Group	between

List of Abbreviations

Abb.	Full term
2D	Two dimensional
	Three dimensional
	Three-dimensional speckle-tracking
3D-81E	echocardiography
зртое	Three Dimensional Trans esophageal
ODIO D	Echocardiography
6MWD	6-minute walk test duration
6MWT	Six minute walk test
ACC/AHA	American College of cardiology
ACE	Angiotensin converting enzyme
AF	Atrial fibrillation
AIDS	Acquired immunodeficiency syndrome
ARVC	Arrythmogenic right ventricular
	cardiomyopathy
ASE	American Society of Echocardiography
BMI	Body Mass index
BSA	Body surface area
CAD	Coronary artery disease
CNS	Central nervous system
CO	Cardiac out put
COPD	Chronic obstructive pulmonary disease
CPET	Cardiopulmonary exercise testing
CRT	Cardiac resynchronization therapy
DBP	Diastolic blood pressure
DC	Direct Cardio version
DCM	Dilated cardiomyopathy
DM	Diabetes mellitus
E	Early diastolic velocity wave

List of Abbreviations (Cont...)

Abb.	Full term
E/A	Ratio between early diastolic wave amplitude of annlus movement and late diastolic wave amplitude of annulus movement
ECG	Electrocardiogram
EDV	End Diastolic volume
EF	Ejection fraction
ESV	End Systolic volume
HCM	Hypertrophic cardiomyopathy
HF	Heart failure
HFpEF	Heart failure preserved ejection fraction
HFrEF	Heart failure reduced ejection fraction
HIV	Human immunodeficiency virus
HmrEF	Heart failure mid-range ejection fraction
HR	Heart rate
HRQOL	Health related Quality of life
HTN	Hypertension
ICD	Intracardiac defibrillator
IHD	Ischemic heart disease
IVS	Intervenrticular septum
LA	Left atrium
LAA	Left atrial appendage
LDL	Low density lipoprotein
LV	Left ventricle
LVH	Left ventricular hypertrophy
LVM	Left ventricular mass
MA	Mitral annulus
MCF	Myocardial contraction fraction
METS	Metabolic equivalents
Min	Minute

List of Abbreviations (Cont...)

Abb.	Full term
Ml/kg/min	Milliliters per kilogram per minute
MLHFQ	Minnesota Living with Heart failure
	Questionnaire
mm	Millimeter
mmHg	Millimeter mercury
MR	Mitral regurgitation
NYHA	.New York Heart Association Functional
PR	Pulmonary regurgitation
PW	Posterior wall
RA	Right atrium
RAAS	Renin angiotensin converting enzyme
	Aldosterone system
RT3DE	Real time three dimension echocardiography
RT4DE	Real time four dimension echocardiography
RVSP	Right ventricular systolic pressure
RWT	Relative Wall Thickness
SBP	Systolic Blood pressure
SD	Standard deviation
Sec	Second
SPAP	Systolic pulmonary artery pressure
SPSS	.Statistical package for social science
SV	Stroke volume
TAPSE	Tricuspid Annular Plane Systolic Excursion
TDI	Tissue Doppler image
TR	Tricuspid Regurgitation
VCO ₂	Rate of elimination of Carbon Dioxide
VE	Ventilator equivalent
VT	Ventilator threshold
βAR	β-adrenergic receptor

ABSTRACT

NYHA classification. Each patient performed a 6MWT and complete a forum of MLHFQ, offered an ECG gated echocardiographic study for assessment of systolic and diastolic functions of right & left ventricles.

Calculated MCF from the HF patients was compared with that obtained from 30 healthy subjects (Group A).

The goal of the study was to determine the correlation between myocardial contraction fractions (MCF), and functional status assessed by 6MWD & quality of life assessed by MLHFQ in HF patients NYHA class I-III.

Keywords: Right ventricular systolic pressure - Renin angiotensin converting enzyme Aldosterone system - Ischemic heart disease - Heart rate .

INTRODUCTION

eart failure (HF) is a complex clinical syndrome that Lesults from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood (1). HF is a global pandemic affecting an estimated 26 million people worldwide and resulting in more than one million hospitalizations annually. Although the outcomes ambulatory HF patients with a reduced ejection fraction (EF) have improved with the discovery of multiple evidence-based drug and device therapies, hospitalized HF patients continue to experience unacceptably high post-discharge mortality and readmission rates that have not changed in the last 2 decades (2).

Functional capacity is considered to be an important clinical and prognostic measure in patients with HF ⁽³⁾. The 6minute walk test (6MWT) has classically been used in clinical settings to evaluate exercise capacity at submaximal exercise levels and has been shown to be an independent predictor of mortality and hospitalizations in patients with HF and a sensitive index to assess response to the rapeutic interventions in HF ⁽⁴⁾.

Pathologic left ventricular remodeling is the final common pathway to heart failure, whether the initial stimulus is chronic pressure or chronic volume overload, genetically determined cardiomyopathy or myocardial infarction. Cardiac remodeling is generally accepted as a determinant of the clinical course of HF ⁽⁵⁾. As cardiac remodeling of the left