

Feasibility of Using Solar Photovoltaic Systems at Egyptian Airports

By

Mahmoud Fekry Ali Mostafa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENC

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
Giza, Egypt

Feasibility of Using Solar Photovoltaic Systems at Egyptian Airports

By Mahmoud Fekry Ali Mostafa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENC
In
Electrical Power and Machines Engineering

Under the Supervision of

Ass.Prof. Dr. Ahmed Mohamed Ibrahim

Electrical power and Machine Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
Giza, Egypt

2017

Feasibility of Using Solar Photovoltaic Systems at Egyptian Airports

By Mahmoud Fekry Ali Mostafa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENC

In Electrical Power and Machines Engineering

Approved by the Examining Committee:

Ass. Prof. Dr. Ahmed Mohamed Ibrahim

Thesis Advisor

Prof. Dr. Essam Eldin Abu El-Zahab Internal Examiner

Prof. Dr. Mohamed Abd Al-Fatah Farahat Faculty of Engineering, Zagazig University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
Giza, Egypt

2017

Engineer's Name: Mahmoud Fekry Ali Mostafa

Date of Birth: 01 Dec. 1987

Nationality: Egyptian

E-mail: Eng_Fekry@hotmail.com

Phone: +2 0111 84 84 324

Address: Ahmed Hussein St., Imbaba, Giza

Registration Date: 1/10/2011

Awarding Date: 2017

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Ass.Prof. Dr. Ahmed Mohamed Ibrahim

Examiners:

Ass. Prof. Dr. Ahmed Mohamed Ibrahim

Thesis Advisor

Prof. Dr. Essam Eldin Abu El-Zahab Internal Examiner

Prof. Dr. Mohamed Abd Al-Fatah Farahat Faculty of Engineering, Zagazig University

Title of Thesis:

Feasibility of Using Solar Photovoltaic Systems at Egyptian Airports

Key words:

Airports, photovoltaic systems, feasibility study, risk assessment, airport safety.

Summary:

In this MSc thesis the possibility of using solar photovoltaic systems at Egyptian airports is presented and discussed. The emerging safety concerns related to the installation of large-scale PV systems at airports are demonstrated with using risk assessment matrices. A pre-feasibility study for using a PV system at some Egyptian airports are demonstrated with the results which indicate that the Egyptian airports can play an effective role in producing renewable energy through the use of solar PV systems.

Acknowledgements

I would like to thank my thesis committee members Ass. Prof. Dr. Ahmed Ibrahim, Dr. Shady H. E. Abdel Aleem and Prof. Dr. Ahmed F. Zobaa; your constant feedback throughout the way, especially on the earlier drafts of the research paper, made for a much improved final product. I would like to express my most heartfelt thanks to all your motivation towards me to complete this MSc thesis and taking the time to revise such rather lengthy chapters.

Many thanks are to all organizations and airports from Egypt and from around the world who helping me in providing data, which are the basis for the quantitative research of this thesis. I do really appreciate very much your fruitful contributions. I received many thoughtful, substantive responses; your comments gave life and direction to this thesis.

I would like to dedicate this piece of work to my beloved family. You are all an inspiration to me. You have sincerely encouraged me, like no one else, from the early beginning and throughout the way.

Thank you all!

TABLE OF CONTENTS

	Page
Acknowledgement	I
Table of Contents	II
List of Tables	VI
List of Figures	VII
List of Abbreviations	XII
List of Publication	XIV
Abstract	XV
Chapter 1: Introduction	1
1.1 Overview	1
1.2 Research Motivation	2
1.3 Research Purpose and Questions	2
1.4. Research Plan	3
1.5 Thesis Outlines	3
Chapter 2: Energy in Egypt	5
2.1 Energy in Egypt	5
2.1.1 Oil Based Energy in Egypt	5
2.1.2 Natural gas based energy in Egypt	6
2.2 Electricity price in Egypt	7
2.3 Solar energy in Egypt	7
2.4 Opportunities for using solar PV at Egyptian airports	8
Chapter 3: Risk Assessment of Using Solar Photovoltaic Systems at Airports	11
3.1 Solar PV at Airports	11

3.2 Photovoltaic Risk assessment methodology on airports	
3.2.1 The "butterfly neck" risk assessment method	
3.2.2 ICAO and EASA risk assessment method	
3.3 Risks related to using solar PV at airports and their possible mitigation solutions	
3.3.1 Risks due to Solar Glint and Glare Reflection	
3.3.2 The risk due to electromagnetic waves by the PV systems	
3.3.3 Hazards due to wildlife (animals and bird strike risk)	
3.3.4 The risk due to PV parts detachment case	
3.3.5 Risks due to different potential events	
3.3.5.1 Aircraft running into a PV farm	
3.3.5.2 Aircraft stopping into a PV farm: Passengers exit	
3.3.5.3 Aircraft stopping into a PV farm	
3.3.6 Summary of risk assessments	
3.4 An overview of international airports using solar PV system	
3.4.1 Cochin International Airport in Indi	
3.4.2 Indianapolis International Airport in the USA	
3.4.3 Kuala Lumpur airport, In Malaysia	
3.4.4 Athens International Airport, In Greece	
3.4.5 Denver International Airport (DIA)–Colorado	
3.4.6 Manchester-Boston Regional Airport-United Kingdom	
3.4.7 Charles de Gaulle Airport-France	
3.4.8 Other Airports	
Chapter 4: Solar Photovoltaic Opportunities on Egyptian Airports	
1.1 Photovoltaic Technologies	

4.1.1 Complete PV systems	23
4.1.2 Centralized and De-centralized System	23
4.2 PV systems improvement solutions	25
4.2.1 Glass treatments	25
4.2.2 Concentrating light solution	25
4.2.3 Tracking systems	25
4.2.4 Converter Efficiency	26
4.2.5 Transport of Energy	26
4.3 PV Systems Costs	26
4.4 Working Methodology	27
4.4.1 Net Metering	27
4.4.2 Trade energy	28
4.4.3 Maximum Capacity	29
4.5 PVGIS Software	29
4.6 Scenarios	31
4.7 Hypothesis	31
4.7.1 The considered scenario	31
4.7.2 Lifetime	31
4.7.3 Change Rate	31
4.7.4 Electricity price for Egyptian airports	31
4.7.5 Investment costs	32
4.7.6 Trade energy	32
4.7.7 Maintenance costs	32
4.7.8 Decentralized PV converter systems	33
4.7.9 Productivity decrease	33

4.7.10 Increase of the airport electrical consumption	33
4.7.11 Project financing	33
Chapter 5: Results and Discussions	34
5.1 Optimal Sizing of PV	34
5.2 Airports under Study	35
5.2.1 6 th of October Airport	36
5.2.2 Port Said Airport	41
5.2.3 Abu Simbel Airport	47
5.2.4 Saint Catherine Airport	52
5.2.5 Marsa Matrouh Airport	58
5.2.6 Dakhla Oasis Airport	63
5.3 Environmental Effects (CO2 Reduction)	70
5.3.1 6 th of October airport	70
5.3.2 Port Said Airport	70
5.3.3 Abu Simbel Airport	70
5.3.4 St. Catherine Airport	70
5.3.5 Marsa Matrouh Airport	70
5.3.6 Dakhla Oasis Airport	70
5.4 Summary of Results	71
Chapter 6: Conclusion and Recommendations	72
6.1 Conclusion	72
6.2 Future Recommendations	72
REFERENCES	73

List of Tables

	Page
Table 2.1: Electricity price in some OECD countries in USD/MWh	7
Table 2.2: The solar plant's yields for 19 Egyptian airports in kWh/kW _P	9
Table 3.1: Risk Probability based on ICAO	13
Table 3.2: Risk Severity based on ICAO	13
Table 3.3: ICAO Risk Assessment Matrix	14
Table 3.4: Risk Tolerability	14
Table 3.5: Risk Assessment Matrix of the Studied Hazards before and after Applying the Suggested Mitigation Solutions	18
Table 5.1: Quality factors of components and different PV systems	35
Table 5.2: The findings regarding cumulative expenses, revenue, and saving, with different financing interest rates for October Airport	40
Table 5.3: The findings regarding cumulative expenses, revenue, and saving, with different financing interest rates for Port Said Airport	46
Table 5.4: The findings regarding cumulative expenses, revenue, and saving, with different financing interest rates for Abu Simbel Airport	51
Table 5.5: The findings regarding cumulative expenses, revenue, and saving, with different financing interest rates for St. Catherine Airport	57
Table 5.6: The findings regarding cumulative expenses, revenue, and saving, with different financing interest rates for Marsa Matrouh Airport	62
Table 5.7: The findings regarding cumulative expenses, revenue, and saving, with different financing interest rates for St. Catherine Airport	68
Table 5.8: Summary of the Results for the Egyptian airports	71