Role of Clinical Pharmacist in Evaluating Risk factors for Multidrug Resistant Bacteria after Living Donor Liver Transplantation

Thesis

Submitted for the partial fulfillment of M. S. Pharm. Science "Clinical Pharmacy"

By Sarah Mohammad Alaa El-Din Ahmed Osman

B. Pharm. Faculty of pharmacy - Misr International University "MIU"-2007

Supervised by

Professor/ Abd El-Hamid Abd Allah El- Shamy

Prof. of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy – Ain Shams University

Professor/ Mahmoud Shawqi El-Meteini

Prof. of General Surgery
Program Director of Ain Shams Center of Organ Transplantation
(ASCOT)
Faculty of Medicine – Ain Shams University

Department of Clinical Pharmacy Faculty of Pharmacy Ain Shams University 2014

Dedication

To the resting soul of

Prof. Dr. Abd El-Hamid El Shamy

Thank You

Approval Sheet

Thesis tiltle: Role of Clinical Pharmacist in Evaluating Risk factors for Multidrug Resistant Bacteria after Living Donor Liver Transplantation.

Name: Sarah Mohammad Alaa El-Din Ahmed Osman

This thesis was approved on	by the committee in
charge:	
1- Prof. Dr. Mahmoud Shawqi El-Meteini	
2- Prof. Dr. Manal H. El-Hamamsy	
3- Prof. Dr. Muhammed M. Bahaa El-din A	Ahmed
Committee in charge	
Date:	

First, thanks are all due to **Allah** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

I'd like heartfelt thanks to the soul of **Prof. Dr. Abd El-Hamid El Shamy** Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy

– Ain Shams University for his great efforts, planning, guidance, moral support and his supervision of this work, ALLAH only can grant him generous favor that he really deserves. May ALLAH bless his soul.

I'd like to express my greatest gratitude, deep thanks and appreciation to **Prof. Dr. Mahmoud Shawqi El-Meteini** Professor of General Surgery and Program Director of Ain Shams Center of Organ Transplantation (ASCOT) Faculty of Medicine – Ain Shams University for his help in all stages of this work, including facilities he offered throughout the work, cooperation and kind encouragement.

I'd like to express my deep praise to **Dr. Azza El Mancy** head of clinical pharmacy department Ain Shams University specialized hospital who sacrified a good deal of her valuble time and experience to guide me throughout the whole work.

Sincere gratitude should also be expressed to **Dr. Hany Dabbous** Lecturer at Tropical Medicine Department, Faculty of Medicine, Ain Shams University for his valuable help and kind encouragement.

I sincerely thank **Dr. Mostafa Abdo** Lecturer at general surgery department, Faculty of Medicine Ain Shams University for his cooperation in this study and for his kind encouragement.

I'd like to express my sincere grace and gratitude to my Professors and Colleagues in Clinical pharmacy department and Ain Shams Centre for Organ Transplantation for their various help and for their valuable knowledge they offered during the period of the study for making this work come to its present shape. I convey my thanks and gratitude.

My sincere thanks to father Prof. Dr. Alaa Osman and mother Dr. Nadia El-Ebissy to whom I own all my successes in life, and my husband Yasser El-ansary for his kind support and encouragement. My special thanks to my grand mother and my aunts who supported me to accomplish this work.

Table of Contents

Content	Page number
Abstrat	vi
Introduction	1
Liver Transplantation	3
Historical background	3
 Selection of candidates 	4
 Indication for transplantation 	5
 Acute liver failure 	6
Chronic viral hepatitis	7
 Cholestatic liver disease 	8
 Hepatobiliary malignancy 	8
 Alcholic liver disease 	9
 Metabolic disease 	9
 Vascular disease 	11
Miscellaneus	11
 Contraindcation for liver transplantation 	11
 Evaluation of candidates for liver 	12
transplantation	
 Living Donor liver transplantation 	12
Selection of living donor	12
Phases of living donor evaluation	13
Preoperative complication in LDLT	17
Postoperative complication in LDLT	18
o Post LDLT infections	20
 Sources and risk factors 	21
 Phases of post LDLT infection 	21
 Early phase 	21
Opportunistic infections	23
Late infection	23
Immunology at glance	25
o Definition of immunology	25
Types of immune response	25
 Non specific immune response 	26
Specific immune response	26
o Characteristics of immune response	28
 Host pathogen interaction 	29

Content	Page number
 Innate immune response 	32
 Humoral immune response 	37
 Cell mediated immunity 	39
Immunosuppression	42
 Induction therapy 	44
Maintenance therapy	45
 Calcineurin inhibitors (CNI) 	46
mTor inhibitors	49
o treatment of rejection episodes	50
Antimicrobials	51
 Classification of antimicrobials according 	53
to mechanism of action	
 Antimicrobials that inhibit cell 	53
wall synthesis	
 Antimicrobials that interfere with 	58
membrane integrity and function	
 Antimicrobial that inhibit nucleic 	59
acid synthesis	
 Antimicrobial that inhibit protein 	61
synthesis	
 Antibiotic resistance 	66
 Mechanism of antibacterial resistance 	68
Genetic mechanism	68
 Biochemical mechanism 	69
Adaptive resistance	73
Non specific resistance	74
 Types of antimicrobial resistance 	76
organisms	
 Pencillin resistant pneumococci 	76
(PRP)	
Vancomycin and methicillin	77
resistance	
 Multidrug resistance of P. 	78
aeruginosa	
 Third generation cephalosporin's 	78
resistant E. coli	
 Fluroquinolone resistant gram 	79
negative pathogens	
 Vancomycin resistant enterococci 	79

Content	Page number
 Risk factors for antimicrobial resistance 	80
 Role of clinical pharmacist in antimicrobials management 	82
 Clinical pharmacist activities 	83
 Active participation in ward round 	83
 Medication information provider 	83
 Checking and monitoring patients prescription 	83
 Patient councelling and education 	84
 Therapeutic drug monitoring 	84
 Active participation in clinical audit 	84
 Skilss needed for clinical pharmacy practice 	85
Antimicrobial pharmacist: A growing need for new speciality	86
 General role for antimicrobial selection 	89
 General principles 	90
 Roles of antimicrobials pharmacist 	90
Aim of work	92
Subjects and methods	93
Results	98
Discuscion	121
Summary and conclusion	128
Recommendations	131
Reference	132
Appendix	147
Arabic summary	_

List of Abbreviations

Abbreviation	Meaning
6- APA	: 6 amino penicillimic acid
AA	: Amino acid
AAH	: Acute alcoholic hepatitis
ABC	: ATP Binding capacity
ACR	: Acute cellular rejection
AIH	: Auto immune hepatitis
AKI	: Acute kidney injury
ALD	: Alcholic liver disease
ALF	: Acute liver falliure
ANA	: Anti nuclear antibody
AP	: Alkaline phosphatas
APC	: Antigen presenting cell
APRAC	: Antibiotic resistance prevention and control
AST	: Antibiotic support team
ATG	: Anti thyno globulin
BMI	: Body mass index
CCA	: Cholangio carcinoma
CD	: Culture of differentiate
CIA	: Cyclosporin A
CMV	: Cytomegalovirus
CNI	: Calcineurin inhibitors
CT	: Computed Tomography
CTP	: Child Turcotte pugh
DM	: Diabetes Mellitus
DRI	: Donor risk index
EARSS	: European anti microbial surveillance system
EBV	: Epestien Barr virus
ECG	: Electro cardio gram
ENT	: Ear, Nose and throat
ERCP	: Endoscopic retrograde cholangio pancreastography
ESBL	: Extended sectrum B- lactamas
EVR	: Evrolimus
FFP	: Freash frozen plasma
GGT	: Gamma glutamyl transferase
HAT	: Hepatic arter thrombosis
HBV HCC	: Hepatitis B virus : Hepato cellular carcinoma
HCV	: Haptitis c virus
HLA	: Human Leukocute antigen
ILA IL	: Interleukim
IMPDH	: Inosine monophosphate dehydrogenese
INH	: Isonicotinic acid hydrazine
IQR	: Interquartile range
IST	: Immunosuppression therapy
LTCF	: Long term care facility
m. Tor	: Mamliam target of rapamycin
MAC	: Membrane attack complex

List of Abbreviations (Cont.)

	List of Abbreviations (Cont.)
Abbreviation	Meaning
MAR	: Multiple Anibiotic resistance
MATE	: Multidrug and toxic compounds extrusion
MEX	: Mutidrug resistance efflux
MFS	: Major Facilitator superfamily
MHC	: Major histocambatapility complex
MIC	: Minimum Inhibitory concentration
MPA	: Mycophenolic Acid
MRT	: Magnetic resonance imaging
MS	: Moderate sensitivity
NDM -1	: Newdelhi metalo B- lactanase
NK	: Natural Killers
OKT	: Ortho Clone
OPRM	: Outer membrane porin
P. RBC'S	: Packed Red blood cells
PABA	: Para amino benzoic acid
PBC	: Primary biliary Cirrhosis
PBP	: Penicillin Binding protein
PELD	: Pediatric end stage liver disease
PNFG	: Primary non functioning graft
PRP	: Penicillin resistant Pneumococci
PSC	: Primary scelerosing cholangtis
PTLD	: Post transport lymphoproliferative disorder
PVT	: Portal vein thrombesses
R	: Resistant
RMD	: Resistance modulation division
RNA	: Ribo neuclic acid
S	: Sensitive
SD	: Standard deviation
SHV	: Sulfhydryl variable
SMR	: Small multidrug resistance
SRL	: Sirolimus
TAC	: Tacrolimus
TCR	: T-Cell receptor
TDM	: Therapeulic drug monitoring
TEM	: Temoneira
TMP	: Trimethoprime
TMP - SMX	: Trimethroprim sulfamethoxazole
TNF	: Tumor necrosis factor
UNOS	: United Network of organ sharink
UV	: Ultra violet
VZV	: Varicilla Zoster virus

List of Tables

Table	Title	Page
1	Show different types of antibodies and their	37
	classifications	
2	Show the activity of penicillins to different organisms	55
3	Summay of antibacterial spectrum of some amino	63
	glycosides	
4	Comparison between cases and controls as regard	102
	personal and medical data	
5	Comparison between cases and controls as regard	103
	preoperative medical history	
6	Comparison between cases and controls as regard	104
	intraoperative medical data	
7	Comparison between cases and controls as regard post	105
	transplantation medical data	100
	Comparison between cases and controls as regard	106
8	duration of: Urinary catheter, central line insertion, ICU	
	and total hospital stay	106
	Multivariate regression to study independent risk factors	106
9	for developing resistant infection after liver	
10	transplantation	107
10	Description of sensitivity of tested antibiotics	107
11	Description of isolated organisms	108
12	Description of sensitivity of tested antibiotics according	109
	to isolated organisms	1.47
13	Description of sensitivity of tested antibiotics according	147
	to isolated organisms	

List of Figures

Fig.	Title	Page
1	Summary of the different indications of liver transplantation	6
2	Segmental anatomy of liver using the Couinaud segments	16
3	Flow chart, Illustrate the possible complication post LDLT	29
4	The common infection period post LDLT	20
5	Shows the types of immune Response.	26
6	The production of antibody in response to antigen	29
7	The innate immune response to control infection	32
8	Different phases of phagocytosis.	33
9	Illustration of the complement system	34
10	The difference between different pathways of complement activation	35
11	Show antibody structure	38
12	Different defenese mechanism exerted by antigen antibody complex	39
13	Illustrate the activity of innate immune response and adaptive immune response.	41
14	Illustration of actions of different immunosupression	46
15	Summary of the antimicrobial discovery years	52
16	The possible biochemical resistance mechanisms of bacteria to antimicrobials	69
17	Model pathway for improving antimicrobial prescribing practice in hospitals using AST	89
18	Show a model BD bactic 9050 instrument	69
19	Recipients habbits in study groups	113
20	Pretransplant prevelance of DM and other comorbidities in study groups	113
21	prevelance of pretransplant abdominal and pleural paracentesis in study groups	114
22	Prevelance of pretransplant hospital admission in study groups	114
23	prevelance of pretransplant abdominal surgery and PVT in study groups	115

List of Figures (Cont.)

	Dist of Fates (cont.)	r
Fig.	Title	Page
24	Prevelance of intraoperative complication events	115
	and performed additional procedure in study	
25	Percentage of intraoperative need for inotropes	116
	and use of venous graft in study	
26	Prevelance of operative time in study groups	116
27	Prevelance of intraoperative Packed RBCs and	117
	freash frozen plazma in study groups	
28	Prevelance of post transplant biliary and vascular	117
	complication is study groups	
29	Prevelance of posttransplant medical	118
	complication and timing of extubation in study	
	groups	
30	Prevelance of post transplant add/change of	118
	antibiotic regimes and radiological intervention	
	in study groups	
31	Duration of post transplant ICU and total	119
	hospital stay in study groups	
32	Duration of post transplant urinary and central	119
	line catheter insertion	
33	Prevelance of isolated organisms in different	120
	infection sites	
34	Data collection sheet form	166

Abstract

Bacterial infection after liver transplantation is the most common early complication after the operation, reported to be more than 60%-80%. Immunocompromised recipients are target for infection by multidrug resistant bacterial strains because of frequent antimicrobial usage. Understanding risk factors for infection can be used to guide the selection of the diagnostic approach and initial therapy.

The aim of the study is to point out resistant bacterial strain to broad spectrum antibiotics and to identify the primary risk factors for antimicrobial resistance among recipient after living donor liver transplantation (LDLT).

Living donor liver transplantation recipients from 2011 to 2013 were screened at Ain Shams Center for Organ Transplantation (ASCOT) for the presence of risk factors for antimicrobial resistance preoperative, intra-operative or post-operative. Routine cultures were withdrawn on day one post-operatively in the ICU and once again when patient is transferred to the ward and in case of fever, elevated C- reactive protein, changed white blood count (WBC) or elevated procalcitonin.

42 patients, 7 females with mean age of 53 ± 6 . 4 years were devided into two groups on the basis of the presence of post transplant infection with multi drug resistant bacterial strains (group 1, n=22) or absence of infection (group 2, n=20).

Several pre, intra and post transplant risk factors showed signicant contribution to the occurrence of post transplant infection with multi drug resistant bacterial strains. Multivariate regression test revealed that prolonged operative time (P=0. 0. 16), multiple radiological interventions (P=0. 040) and multiple antibiotic changes post operatively (P=0. 038) were the main risk factors for developing infection with MDR.

Upon investigating the type and pattern of multiple drug resistant of isolated bacterial strains, 257 bacterial cultures were analyzed, 70. 8% were gram negative poly microbial resistant bacterial strains and 29. 2% were gram positive resistant strains to third generation cephalosporin, carbapenems and quinolones. The most common isolated resistant organisms were Pseudomonas auerogenosa (25. 8%), Klebsiella spp (19. 5%), MRSA (18%), Acinetobacter spp. and E. Coli (9. 8%). The most common sites of infection were biliary and abdominal drains (49. 3%).

The current study concluded that gram negative polymicrobial resistant biliary infection is the most common bacterial infection after LDLT. Careful usage of antibiotics, short operative time and reduced rate of radiological intervention are recommended for better patient outcomes.

<u>**Key words**</u>: liver donor liver transplantation, posttransplant infection, multiple drug resistant bacteria

Introduction

The discovery and clinical application of antibacterial agents represents one of the shining achievements of medical science in the 20th century. Dozens of effective antimicrobial agents have been discovered during the past sixty years. The clinical use of antimicrobial agents has spawned, as an unwanted consequence, the widespread emergence of bacteria resistant to these valuable drugs (Moellering, 2007).

Resistance was defined as misuse and overuse of antimicrobials, it developes when potentially harmful bacteria change in a way that reduces or eliminates the effectiveness of antimicrobials (Mamalis, 2008). With the discovery of each new class of antimicrobial agents, beginning with sulfonamides in 1930s and penicillin in 1940s, resistance has developed and has become a truly worldwide problem (Moellering, 2007).

Resistance occurs wherever antimicrobials are used in the community, on the farm and in the healthcare settings. In order to minimize the selective pressure of antimicrobials, it is important to make sure that when antimicrobials are used, they are used appropriately (Levy and Marshall, 2004).

The young, the elderly and the immunocompromised are all targets for infection by antimicrobial resistant organisms. These are groups in whom antimicrobial usage is greatest and hence where selective pressure for antimicrobial resistance is greatest (Christiansen, 2007).

Living donor liver transplantation (LDLT) has been used for end stage liver disease (ESLD) since 1989. LDLT has basically resolved the problem of donor organ shortages. However, early complications postoperatively and long term life quality are issues that still need to be resolved (Liu et al., 2010)

Infection after liver transplantation, especially bacterial infection is the main early complication after the operation. It is reported that the rate of bacterial infection is often more than 60%-80% and often at least no less than 2 organs or positions that are infected by bacteria (Zhou et al., **2006).** Bacteremia has been reported to be the main cause of mortality in liver transplant recipients. The mortality in bacteremic liver transplant recipients has been found to range between 24% and 36% (Kim et al., 2009). In addition, the release of cytokines during infection may have other indirect and negative effects, including allograft injur, opportunistic super infection and malignancy (Zhou et al., 2006)

1