

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

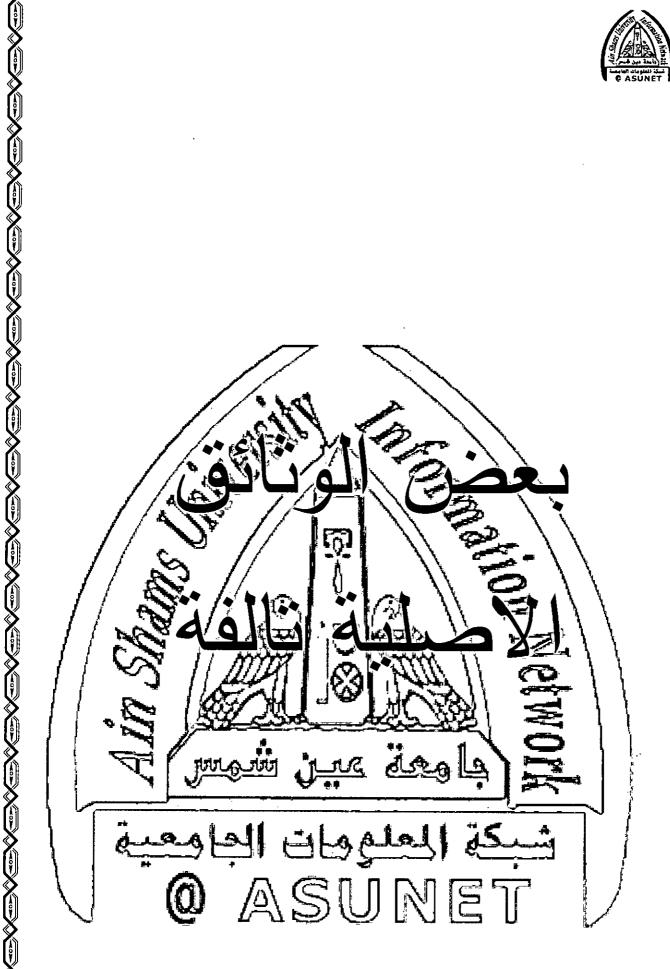
شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكترونى والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات


يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ١٥-١٠ % منوية ورطوية نسبية من ٢٠-١٠ المنافلات ا

660

THERMAL STABILIZATION OF POLYVINYL CHLORIDE USING ALUMINA

BY Marwa Mostafa Yousef B.Sc.Chem.Eng.

A Thesis submitted to the
Faculty of Engineering- at Cairo University
In Partial Fulfillment of The requirements for degree of
MASTER OF SCIENCE
In
Chemical Engineering

Faculty of Engineering, Cairo University

Giza, Egypt

July, 2006

32149)

THERMAL STABILIZATION OF POLYVINYL CHLORIDE USING ALUMINA

BY
Marwa Mostafa Yousef
B.Sc.Chem.Eng.

A Thesis submitted to the Faculty of Engineering- at Cairo University
In Partial Fulfillment of The requirements for degree of MASTER OF SCIENCE

In Chemical Engineering

Under supervision of

Prof. Dr. Magdi F. Abadir

Prof. Dr. Samia Sobhi M. Youness

Professor Of Chemical Engineering, Cairo University Professor Of Chemical Engineering, Cairo University

Faculty of Engineering, Cairo University

Giza, Egypt

July, 2006

THERMAL STABILIZATION OF POLYVINYL CHLORIDE USING ALUMINA

BY Marwa Mostafa Yousef B.Sc.Chem.Eng.

A Thesis submitted to the Faculty of Engineering- at Cairo University In Partial Fulfillment of The requirements for degree of MASTER OF SCIENCE

> In Chemical Engineering

Approved by the Examining committee:

Prof. Dr. Magdi F. Abadir

Professor Of Chemical

Main

Engineering, Cairo University

advisor

Prof. Dr. El Sayed Abdel Maguid Sherif

Dayed Shenif

Professor Of Chemical

Engineering, Cairo University

Member

Prof. Dr. Mohamed Tawfik Haridy

Taufik Havidy

Professor Of Chemical

Engineering, French University

Member

in Cairo

Faculty of Engineering, Cairo University

Giza, Egypt

July, 2006

ABSTRACT

PVC has been widely used for various purposes because of its low price, good durability, availability and ease of processing; PVC is virtually never used alone, but always in combination with other materials. many of its advantages are enhanced by incorporation of small solid particles as reinforcingagent, stabilizer, plasticizer, pigments or other additives.

The thermal degradation of a type of PVC was investigated. Complex processes for PVC degradation were evidenced. The kinetic analysis of dehydrochlorination and subsequent process was investigated by thermogravimetric (TG) analysis, and derivative thermogravimetry (DTG) at different temperatures. The values of non-isothermal kinetic parameters were determined by Sabri et al method. Isothermal kinetics were also studied.

Aluminum oxide was used as astabilizer in different ratios. It was added to PVC in the following percentage 33.3%, 25%, 20%, 16.7%.

The effect of these different ratios on the thermal properties of the polymer was studied to determine the optimum amount which can be used as a thermal stabilizer.

y)

ACKNOWLEDGMENT

I wish to express my thanks to Prof.Dr.Magdi Fouad Abadir, Chemical Engineering Department, Faculty of Engineering, Cairo university, for suggesting the point of research and for his support and guidance through every stage of the work. I am deeply grateful to him for his encouragement, nonfailing support and facilities he always offered.

I would also like to express my grateful thanks to Prof.Dr.Samia sobhi, Chemical Engineering Department, Faculty of Engineering, Cairo university, for unlimited assistase, reading, critiquing the manuscript, also her utmost patience and distinguished remarks are greatly acknowledged.

I wish to express Dr. Hassan Barakat, Delegated assistance professor to the Faculty of Engineering, Cairo university, for his valuble suggestions.

I would like to express my deepest thanks to my parents, my husband for their unlimited support, care and understanding. I am greatly indebted to them for their continuous encouragment and generous effort throughout this thesis.

CONTENTS

Abstract		Page
Chapter	<u>one</u>	
Introduc	tion	1
Chapter	<u>two</u>	
Background and literature survey		3
2.1	poly vinyl chloride	3
2.2	vinyl chloride monomer	3
2.2.1	production methods	3
2.2.2	properties of the V.C. monomer	5
2.2.3	Copolymers	6
2.2.4	Safety and handling	7
2.3	General applications of poly vinyl chloride	8
2.3.1	Flexible PVC	8
2.3.2	Rigid PVC	9
2.4	Properties of PVC	9
2.4.1	Chemical Properties	. 9
2.4.2	physical properties	10
2.5	Polymerization of vinyl chloride	11
2.5.1	Bulk polymerization	11
2.5.2	Suspension polymerization	12
2.5.3	Emulsion polymerization	14
2.6	plasticizers	17
2.6.1	Requisites of plasticizer	18
2.6.2	plasticizer type	18
2.7	the chemistry and the structure of the polymer chain	21

2.7.1	Bonds available in the chain from contamination		
	and formed in the process of thermal degradation	21	
2.7.2	Irregular segments of the chain	23	
2.8	Volatile products of the thermal degradation process	28	
2.9	stabilizers	30	
2.9.1	Definition	30	
2.9.2	Need for stabilizer	30	
2.9.3	Selection of a stabilizer	31	
2.9.4	Effectiveness of stabilizer	31	
2.10	Degradation of PVC	32	
2.10.1	Degradation mechanism	32	
2.10.2	Degradation during processing	33	
2.10.3	Thermal decomposition of problems	36	
2.11	Health and environmental problems	46	
2.12	Kinetics of chemical reaction	47	
2.12.1	Isothermal kinetics	47	
(a)	Introduction	47	
(b)	Effect of temperature	48	
(c)	Homogeneous reactions	49	
(d)	Solid state reactions	50	
(e)	Limitations of isothermal studies	51	
2.12.2	Non- isothermal methods	53	
(a)	Procedure for non- isothermal studies	53	
2.12.3	kinetic equations under rising temperature conditions	54	
2.12.4	Treatment of non –isothermal kinetic data	55	

Chapter three Materials and experimental technique 60 3.1 Materials 60 3.1.1 **PVC** 60 3.1.2 Solvent 60 3.1.3 Aluminum powder 61 Sample preparation 3.2 61 3.3 Experimental technique 61 3.3.1 Thermal analysis 61 Non- isothermal analysis (a) 61 (b) Isothermal analysis 62 3.4 Evaluation of the molecular weight 62 **Chapter Four** Results and discussion 63 4.1 Non – isothermal results 63 4.1.1 Decomposition of pure PVC 63 (a) Thermal decomposition curves 63 (b) Kinetics of decomposition step (2) 67

4.2.1	Decomposition of pure PVC	82
(a)	Coarse particles	82
(b)	Intermediate particles	86
(c)	Fine particles	86
4.2.2	Effect of addition of alumina	86
(a) .	Coarse PVC particles	86
(b)	Intermediate PVC particles	99
(c)	Fine PVC particles	100
4.2.3	Concluding remarks	112
<u>Chapter</u>	<u>r Five</u>	
Conclusion		113
References		115

List of table

Table No.		Page
(2-1)	Physical properties of vinyl chloride	6
(2-2)	Some physical -mechanical properties of PVC	11
(3-1)	The properties of PVC which was used in this study	60
(3-2)	The properties of tetrahydrofuran which was used in	
	this study	61
(4-1)	Decomposition temperature in PVC degradation (°C)	67
(4-2)	Details of calculations of kinetic parameters for fine	
	particles	67
(4-3)	Apparent order of reaction and activation energy of	
	step (2) for pure coarse particles	68
(4-4)	Effect of addition of alumina on temperature of the	
	second decomposition step of PVC (coarse particles)	71
(4-5)	Effect of addition of alumina on the kinetic	
	parameters of the second decomposition step of PVC	
·	(coarse particles)	71
(4-6)	Effect of addition of alumina on the temperature of	
	the second decomposition step of PVC (intermediate	
	particles)	73
(4-7)	Effect of addition of alumina on the kinetic	
	parameters of the second decomposition step of	
	PVC (intermediate particles)	76
(4-8)	Effect of addition of alumina on the temperature of	•
	the second decomposition step of PVC (fine	
	particles)	78