

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام عن ٢٠-١٠% في درجة حرارة من ٢٥-١٥ منوية ورطوية نسبية من ٢٠-١٥ to be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

CAIRO UNIVERSITY

INSTITUTE OF STATISTICAL STUDIES AND RESEARCH DEPARTMENT OF APPLIED STATISTICS AND ECONOMETRICS

SOME ASPECTS OF STATISTICAL INFERENCE

IN COINTEGRATING RELATIONS

By
Dahir Abbas Reda
Foundation of Technical Education
Iraq –Baghdad

Under the Supervision

Prof. Dr. Ghazal Abd El - Aziz Amer Professor of Statistics and Econometrics Institute of Statistical Studies & Research, Cairo University Prof.Dr. EI-Houssainy Abdel Bar Rady Professor of Statistics Institute of Statistical Studies & Research, Cairo University

Dr. Alaa Ahmed Abd El-Aziz
Associate Prof. of statistics and Econometrics
Institute of Statistical
Studies & Research,
Cairo University

Thesis
Submitted in Partial Fulfillment of the requirements
For the Ph.D degree in Statistics

2011

PKV01

APPROVAL SHEET

SOME ASPECTS OF STATISTICAL INFERENCE IN COINTEGRATING RELATIONS

By

DAHIR ABBAS REDA

This thesis has been submitted to the Institute of Statistical Studies and Research Cairo University in Partial Fulfillment of the Requirements for ph.D degree in .Statistics and has been approved by:

Prof Dr. GHAZAL ABDEL AZIZ AMER

Prof Dr .EI-HOSSAINY ABDEL BAR RADY

Prof Dr. AMANY MOUSA MOHAMED

Prof Dr .IBRAHIM HASSAN IBRAHIM

ن-از عار

Ibral H

Certification

I certify that this work has not been accepted in substance for any academic degree and is not being concurrently submitted in Candidature for any other degree.

Any portions of this thesis for which I am indebted to other sources are mentioned and explicit references are given.

The Student:

ACKNOWLEDGMENTS

I would like to take this opportunity to thank everyone who contributed to the successful completion of this thesis. Special thanks is expressed to Prof.Dr. Ghazal Abd-El Aziz Amer, Professor of Statistics and Econometrics of the Institute of Statistical Studies and Research, Cairo University, for his invaluable advice, guidance, and support throughout the thesis. Without his tircless assistance, and leadership, this thesis would not have been possible. I also want to thank Prof.Dr EI-Houssainy Abdel Bar Rady, Professor of Statistics and Econometrics of the Institute of Statistical Studies and Research, Cairo University, and also thank to Dr. Alaa Ahmed Abd El-Aziz associate Prof of statistical Econometrics for his invaluable help during the preparation of the thesis. Sincere thanks are extended to my graduate committee members, Prof.Dr. Prof Dr. Amany Mousa Mohamed and Prof.Dr. Ibrahim Hassan Ibrahim for their constructive criticism and recommendations for this thesis.

Thanks are also my professors and to the staff of department of Applied Statistics and Econometrics of the Institute for their support along my studies years.

CONTENTS

		Page
	Summary	Ш
	Symbols and Abbreviations	VII
Chapter (1):	Introduction	1
Chapter (2):	Tools For Cointegration Econometrics	5
	(2-1) Brownian motion (Wiener) processes	5
	(2-2) The Functional Central Limit Theorem (FCLT)	9
	(2-3) Continuous Mapping Theorem (CMT)	12
	(2-4) Applications to Cointegration	13
	(2-5) Models of Nonstationary Time Series	20
	(2-6) Estimation and inference in regression models	25
	involving deterministic time trends	
	(2-7) Spurious Regressions	31
	(2-8) Error Correction Models (ECM)	33
Chapter (3):	Cointegration Analysis	38
	(3-1) Overview	39
	(3-2) Extensions of the Theory of Cointegration	44
	(3-3) Econometric Modeling with Cointegrated Variables	49
	(3-4) The Mathematical Analysis Of the Cointegration Models	52
	(3-5) Cointegration Relationships	57
Chapter (4):	A Comparative Study Of Various Methods Of	63
	Estimating Cointegration Relationships	
	(4-1) Review of the six Estimator Methods	65
	(4-1-1) The Ordinary Least squares cointegrating space	65

	(4-1-2) Augmented OLS		66
	(4-1-3) The Phillips- Hansen, Fully - M	Iodified estimator	67
	(4-1-4) Engle -Yoo 3-Step estimator		71
	(4-1-5) Differenced vector autoregressi	ive (VAR)	74
	Maximum Likelihood		
	(4-1-6) Box - Tiao method		78
	(4-2) The Design of Monte - Carlo Expe	eriment Results	81
	(4-3) More on Simulation Results		83
Chapter (5):	Is The Ordinary Least Squares Estimator Hazardous		89
	For Testing Cointegration		
	(5-1) Introduction		89
	(5-2) Model, Assumptions, and the cointe	grating Estimator	90
	(5-3) Matrix Formulation of The Sampling Error		91
	(5-4) Statement of Results		98
	(5-5) Proof of theorems	· .	100
	! !		-
Appendix (A)	Limit theorem for scrially dependent Random Variables		
Appendix (B)	Tables concerning the bias and MSE of estimation methods	of the	
Appendix (C)	Tables concerning the critical values of cointegration tests	: of the :	

References

SUMMARY

The analysis of nonstationary time series, unit roots and cointegration has developed dramatically over the last 30 years. The papers presented during this period variously describe new methods of estimating cointegrating relations, and testing for cointegration.

It is now over 30 years since the landmark paper by Engle and Graner (1987) on cointegration. This paper brought the concept to the attention of most economists beside the specialized econometricians. It seemed then that to estimate a cointegrating relationship all one need to know was how to carry out a simple regression using ordinary least squares OLS one could always appeal to the superconsistency results to support one's technique. However, the paper appeared before 1987, many econometricians were finding problems with simple OLS with integrated processes (Philips and Durlauf, 1986) and were beginning to put forward alternative estimators.

A number of problems exist with OLS. Firstly, there are difficulties if one tries to estimate accurately a "long-run" relationship with only a small sample over a short time period. Furthermore, while the OLS estimator may be super consistent, i.e., of order (1/T) instead of the usual (1/ \sqrt{T}), it can be biased in finite samples. The distribution is not symmetric, because of a unit root term within it, plus there is additional bias created not necessarily by a contemporaneous covariation but rather a "long-run" covariation between the regressors, X, and the

error term, u. This "long term" covariation is defined as the sum of all the covariances of X_{t-k} with u_t for k=0 to infinite. Because of the analogy with the standard assumption that $C_{ov}(x_t,u_t)\neq 0$ in normal OLS, this bias is sometimes referred to a simultaneity or endogecity bias, X.

Given these problems with OLS many alternative estimators have emerged among the many estimators for long-run coefficients.

The concept of cointegration was first introduced by Granger (1981) and elaborated further by Engle and Granger (1987), Engle and Yoo (1987, 1991), Phillips and Ouliaris (1990), Stock and Watson (1988), Phillips and Loretan (1991) and Johansen (1988, 1991, 1994), among others. Working in the context of a bivariate system with at most cointegrating vector, one Engle and Granger (1987) propose to estimate the cointegrating vector $\xi = (1, \xi_2)^T$ regressing the first component $z_{1,i}$ of z_{i} on the second component $z_{2,i}$ using OLS (which is called the cointegrating regression), and then testing whether the OLS residuals of this regression have a unit root, using the Augmented Dickey-Fuller (ADF) test.

In the literature on cointegrated time series, hypothesis tests developed for testing for cointegration have a null hypothesis of "NO COINTEGRATION". Such tests can be found in Engle and Granger (1987), Phillips and Ouliaris (1990). However, there would seem to be some merit in constructing a test of the null hypothesis of "COINTEGRATIION".

If we were to use the Standard Dickey-Fuller tests of the null hypothesis of cointegration, then we are implicitly saying that we believe the variables are NOT COINTEGRATED unless the data can, convincingly demonstrate otherwise.

Instead, if we suggest a test of the null hypothesis of cointegration, so that we will believe the variables to be COINTEGRATED unless the data can strongly convince us otherwise. Such an approach may prove to be useful.

The major objectives of this thesis are:

- To perform a comparative study of different methods of estimating cointegration and this will be done via Mont Carlo simulation.
- To show that the Ordinary Least Squares Estimator may not be too hazardous for testing the cointegration relation for the models with drift.
- To use the small σ approximate to drive the bias to order $O(\sigma^2)$, and the mean square error (MSE) to order $O(\sigma^4)$ of the ordinary least squares (OLS) estimator of cointegrating coefficient.

The thesis contains five chapters. After the introduction in chapter one,

Chapter (2) introduces a brief introduction to the Wiener process, the Functional Central Limit Theorem (FCLT), Continuous Mapping Theorem (CMT), and some applications of the above three tools. Also to models of non stationary Time Series and their estimation and inference will be discussed. Finally this chapter ended with the concepts of Spurious Regressions, and the "Error Correction Models (ECM).

In Chapter (3) the concept of cointegration is introduced with its different extensions. Three theorems which considered as the backbone of the Mathematical Analysis of cointegration models are introduced. Finally the existence and the nature of long-run relations are investigated using cointegration technique.

The main contributions of this thesis are given in chapters four and five.

In chapter (4), Monte-Carlo simulation experiment is used to compare between the six estimators of cointegrating relations (Ordinary Least Squares, Augmented Ordinary Least Squares, Fully Modified estimator, Three Step estimator, Vector autoregressive Maximum likelihood estimator, And Box Tiao).

Finally in Chapter (5) the model, assumptions, and cointegration Estimator, matrix formulation of the sampling error are introduced with its proof.