

Ain shams university Faculty of engineering

Study the Effect of Changing the Load on the Performance of Combined Cycle

BY

Hany Shaker Ezzat Mohammed

Thesis submitted to the Faculty of Engineering
Ain Shams University

In Partial Fulfillment for the degree of
Master of Science
In
Mechanical power Engineering

Supervised by

Prof. Dr. Samir M. Abdel Ghany
Prof. Dr. Abd El-Aziz Morgan
Dr. Ashraf Kotb

Department Of Mechanical Power Engineering Faculty of Engineering Ain Shams University

Cairo 2016

Ain shams university Faculty of engineering

MASTER THESIS

Student's Name: Hany Shaker Ezzat Mohammed

Thesis Title: Study the Effect of Changing the Load on the

Performance of Combined Cycle **Degree:** Master Degree **EXAMINERS COMMITTEE** 1. Prof. Dr. Fouad Mohammed Mansour Egyptian Electricity Holding Company Ministry of Electricity 2. Prof. Dr. Kaddah Shaker Kaddah () Department of Mechanical Power Engineering Faculty of Engineering Ain Shams University 3. Prof. Dr. Samir Mohammed Abdel Ghany () Department of Mechanical Power Engineering Faculty of Engineering Ain Shams University 4. Prof. Dr. Abdul Aziz Morgan Abdul Aziz () Department of Mechanical Power Engineering Faculty of Engineering Ain Shams University

Cairo 2016

Statement

This thesis is submitted to Ain Shams University in partial

fulfillment for the requirements of the degree of M.SC. in

Mechanical Power Engineering. The included work in this thesis

has been carried out by the author at the Dept. of Mechanical

Power Engineering, Ain Shams University. No part of this thesis

has been submitted for a degree or a qualification at any other Uni-

versity or Institute.

Name: Hany Shaker Ezzat Mohammed

Signature:

Date:

i

ACKNOWLEDGEMENTS

I thank the almighty ALLAH for his mercy and grace, which enabled me to complete this work.

I would like to express my deep appreciation to Prof. Dr. Samir Abdel Ghany for his editing corrections for the whole thesis. I thank him for his effort, concern, advices and the time he spent in helping me.

Thanks deeply to Prof. Dr. Abd El-Aziz Morgan, for treating me like his son, for his time, for the effort he had exerted for me to make this research reality, great help and efforts during developing this thesis.

My sincerest gratitude is extended to. Dr. Ashraf kotb for the help he gave, advice, patience and understanding he has shown throughout this work.

I wish to express my thanks to all friends for helping and providing me a lot of great references and especially Waleed & Mai.

Last but not least, I am grateful to my family, father, mother my brothers and especially for my wife Gehad, Omar, Reem, Seif El Din, for their help, trust and supporting me all the time.

Hany Shaker Ezzat Mohammed 2016

Abstract

The electricity sector in Egypt works towards the expansion in the production of electrical power to meet the electricity demand of the other national various sectors. The type of power plant to be established will be selected, either renewable energy (Wind – Solar) power plant, or thermal power plants [steam cycle power plant – simple cycle (gas turbine GT) power plant or combined cycle power plant].

Combined cycle power plant is the best in terms of technical and economical advantages such as, highest efficiency among all kinds of thermal power plants across load ranges (56%), fastest based on GT, short order to operation time, and less generation cost.

Therefore, the real understanding and knowledge of its transient behavior are thought as they may help in improving the possibility of operating it as a variable load unit as well.

The transient behavior of the steam part of the combined cycle power plants is studied under gradual and sudden changes of load. The actual transient readings of Sidi Krir combined cycle power plant are compared with the results of the mathematical model for gradual change of load. Good agreement between the field results and the mathematical model was achieved. Due to good agreement between the actual and the model results in case of gradual load

change, the study is extended to include the case of sudden change of load to show the advantages and disadvantages of each control approach. The results of the case of sudden change of load obtained from the theoretical model showed that the response is much faster than the gradual response. Fast response time does not lead to the occurrence of water hammer, however this fast change may cause thermal stresses on the metal which could lead to thermal cracks.

LIST OF CONTENTS

ACKNO	OWLEDGMENT	1	ii
ABSTRACT			
LIST O	F CONTENTS		v
LIST O	F FIGURES		ix
LIST O	F SYMBOLS AT	ND ABBREVIATIONS	xi
СНАР	TER ONE	INTRODUCTION	
1.1	BACKGROUN	ND OF COMBINED CYCLE	1
1.2	OUTLINE OF THE THESIS		
1.3	AIM OF PRESENT WORK		
СНАР	TER TWO	LITERATURE SURVEY	
2.1	INTRODUCTI	ON	4
2.2	REVIEW OF PREVIOUS WORK		
СНАР	TER THREE	COMBINED CYCLE AND	
		TECHNICAL SPECIFICATIONS	
		OF SIDI KRIR POWER PLANT	
3.1	INTRODUCTION		10
3.2	COMBINED C	CYCLE MAJOR COMPONENTS	12
	3.2.1 Gas t	urbine simple cycle	12
	3.2.1.	1 Air compressor	13
	3.2.1.	2 Combustion chamber	14

		3.2.1.3	Gas turbine	14
	3.2.2	Gas dam	pers	15
	3.2.3 Steam generating unit			16
	3.2.4	Steam tu	arbine	16
	3.2.5	Control	system	17
3.3	COMB	NED-CYCLE THERMODYNAMICS 18		
3.4	TECHNICAL SPECIFICATION OF SIDI KRIR POWER			21
	PLANT			
	3.4.1	Major st	ation parameters	21
СНАІ	PTER F	OUR	MATHEMATICAL MODELLIN	G
4.1	INTRO	DUCTION	J	23
4.2		HEAT EXCHANGERS		28
4.3				34
4.4	STEAM & WATER DRUM AND DOWNCOMER-RISER		36	
	(EVAPORATOR)			
	4.4.1	Downco		37
	4.4.2	Riser		38
	4.4.3	Steam ar	nd water drum	40
4.5	STEAM TURBINE		45	
	4.5.1	thermod	ynamics of steam turbine	45
	4.5.2	Shaft spe	eed dynamics	47
4.6	CONTROL LOOPS		49	
	4.6.1	PID con	troller	49
	4.6.2	Single element control system		50
		4.6.2.1	Gas damper position control loop	50
		4.6.2.2	Turbine steam valve position control loop	51

		4.6.2.3	Feed water valve position control loop	51
	4.6.3	Two element control system		
		4.6.3.1	Gas damper position control loop	55
		4.6.3.2	Turbine steam valve position control loop	55
		4.6.3.3	Feed water valve position control loop	56
	4.6.4	Three ele	ement control loop	56
		4.6.4.1	Gas Damper Position Control Loop	57
		4.6.4.2	Turbine Steam Valve Position Control	57
			Loop	
		4.6.4.3	Feed water Valve Position Control Loop	58
4.7	GAS TURBINE SIMBLE CYCLE			61
	4.7.1	Air Com	pressor	62
	4.7.2	Combust	tion Chamber	63
	4.7.3	Gas Turl	pine	63
СПА	PTER F		COMPUTER SIMULATION PROGE	АЛЛ
CHA	ILKI	IVE (OMFUTER SIMULATION FROGE	VATAT
5.1	Introdu	ction		65
5.2	2 Description of Main Program and Subroutines		in Program and Subroutines	65
	5.2.1	Main pro	ogram	65
	5.2.2	Initializa	tion subroutine (INIT)	66
	5.2.3	Steam ta	ble subroutine (STABLE)	66
	5.2.4	Friction	subroutine (FRIC)	69
	5.2.5	Gas turb	ine subroutine (GTUBN)	69
	5.2.6	Control	subroutine (CONTRL)	69
	5.2.7	PID cont	troller subroutine (PID)	71
	5.2.8	Steam tu	rbine subroutine (STTURB)	71
	5.2.9	Updating	g variables subroutine (CHANG)	71

	5.2.10	Downcomer-riser subroutine (DCRS)	73
	5.2.11 Drum subroutine (DRUM)		
	5.2.12	Parallel cross flow heat exchanger subroutine	74
		(HECROS)	
	5.2.13	Properties subroutine (PROP)	74
CITA	DEED CL	V DEGLICEG DIGGLIGGIONG	
СНА	PTER SI	X RESULTS, DISCUSSIONS	
		CONCLUSIONS & FUTURE WOI	RK
6.1	1 INTRO	DUCTION	75
6.2	2 LOAD	DECREASE GRADUALLY	75
6.3	3 SUDDE	EN DECREASE OF LOAD	80
6.4	4 CONCL	LUSION	87
RFF	FRANCE	rs	89
	REFERANCES		
APP	APPENDICES		

11

LIST OF FIGURES

CHAPTER THREE COMBINED CYCLE AND TECHNICAL SPECIFICATIONS OF SIDI KRIR POWER PLANT

Schematic diagram of combined cycle

Figure 3.1

Figure 3.2	Gas turbine simple cycle		
Figure 3.3	Joule-Brayton reversible cycle	19	
Figure 3.4	Steam turbine efficiency η_{st} vs. gas turbine efficiency η_{gt}	21	
	for combined-cycle efficiencies $\eta_{cc}\ 0.40.7$		
CHAPTER	FOUR MATHEMATICAL MODELLING		
Figure 4.1	schematic diagram for the combined cycle modules	24	
Figure 4.2	Schematic diagram showing the meshes for parallel cross	29	
	flow heat exchangers (economizer and superheater)		
Figure 4.3	3 Schematic diagram showing the mesh for cross flow	29	
	heatexchanger (evaporator)		
Figure 4.4	A finite element with the volume (dx,dy,dz) in a	30	
	convective cross flow heat exchanger		
Figure 4.5	Efficiencies of circumferential fins of rectangular	34	
	profile.		
Figure 4.6	Schematic of the drum, downcomer-riser loop	36	
Figure 4.7	Longitudinal and circular cross section of the cylindrical	43	
	drum		
Figure 4.8	(T-S) diagram of the ideal Rankine cycle.	46	
Figure 4.9	A schematic for the steam cycle of a simple combined	47	

cycle				
The single element control loop	52			
The two element control loop.	54			
The three element control loop	60			
A schematic for the gas turbine simple open cycle				
(T-S) diagram of the gas turbine simple cycle				
DEIVE COMDITTED SIMILIATION DDOC	D А ТИТ			
XFIVE COMPUTER SIMULATION FROG	NAIVI			
Main program flow chart	68			
Control subroutine flow chart	70			
downcomer-riser subroutine flow chart	72			
Drum subroutine flow chart	73			
R SIX RESULTS, DISCUSSIONS				
CONCLUSIONS &FUTURE WORK				
Comparison of the actual results of Sidi Krir power plant	77			
combined cycle during gradual change of load with the				
corresponding model results.				
The computer model results in case of sudden load	87			
decrease.				
	The single element control loop The two element control loop. The three element control loop A schematic for the gas turbine simple open cycle (T-S) diagram of the gas turbine simple cycle R FIVE COMPUTER SIMULATION PROGI Main program flow chart Control subroutine flow chart downcomer-riser subroutine flow chart Drum subroutine flow chart R SIX RESULTS, DISCUSSIONS CONCLUSIONS & FUTURE WORK Comparison of the actual results of Sidi Krir power plant combined cycle during gradual change of load with the corresponding model results. The computer model results in case of sudden load			

LIST OF SYMBOLS AND ABBREVIATIONS