List of Contents

	Title	Page
•	List of Contents	I
•	List of Abbreviation	II
•	List of Figures	III
•	List of Tables	V
•	Introduction	1
•	Aim of the Work	3
•	Review of Literature	4
	o Chapter I: Dilated Cardiomyopathy	4
	o Chapter II: Ischemic Cardiomyopathy	18
	o Chapter III: Diagnosis of Cardiomyopathy	29
•	Patients and Methods	58
•	Results	70
•	Discussion 83	
•	Summary89	
•	Conclusion and Recommendations93	
•	References	95
•	Arabic Summary	

List of Abbreviations

ACCAmerican College of Cardiology AHA American Heart Association **AC** Air Condition CABGCoronary Artery Bypass Graft **CAD**......Coronary Artery Disease CICardiac Index **CMR** Cardiovascular Magnetic Resonance **CT**Computed Tomography **DCM**Dilated Cardiomyopathy **ECG**.....Electrocardiogram **EF** Ejection Fraction **GH**.....Growth Hormone **HCM**.....Hypertrophic Cardiomyopathy HIVHuman Immunodeficiency Virus **ICM**.....Ischemic Cardiomyopathy **LV**.....Left Ventricle LVEF..... Left Ventricular Ejection Fraction LVNC.....Left Ventricular Non-compaction MI......Myocardial Infarction MR......Mitral Regurgitation **NYHA** New York Heart Association **SPECT** Single Photon Emission Computed Tomography **SRI**.....Stress Rate Imaging SWMA Segmental Wall Motion Abnormality TDETissue Doppler Echocardiography WMSI......Wall Motion Score Index

List of Figures

Figure No.	Title	Page
Fig. (1):	Cardiac Magnetic resonance imaging of dilated cardiomyopathy, Hare JM: Etiologic basis of congestive heart failure	4
Fig. (2):	Isolated left ventricular noncompaction in an autopsy specimen, shown in short-axis view	10
Fig. (3):	Algorithm to detect potentially reversible ischemic cardiomyopathy	22
Fig. (4):	Plain PA chest in a 51-year-old male demonstrates marked enlargement of the cardiac silhouette compatible with a dilated cardiomyopathy	
Fig. (5):	The event-free survival in 87 patients with an ischemic cardiomyopathy who underwent dobutamine echocardiography.	
Fig. (6):	GE® Vivid 5 Cardiac Ultrasound machine	61
Fig. (7):	The acquired internal dimensions of the left ventricle in both systole and diastole, using the M-mode	
Fig. (8):	Measuring the end systolic volume using the modified Simpson's method in the apical 2 and 4 chamber views	63
Fig. (9):	The American Heart Association 17-segment model	64

List of Figures (Cont.)

Figure No.	Title	Page
Fig. (10):	CardioMD™, Philips® Gamma camera.	66
Fig. (11):	Philips® ALLURA	67
Fig. (12):	Prevalence of an ischemic ECG pattern among patients of the two groups	
Fig. (13):	Pulsed wave Doppler on Mitral flow in a 54 years old male subject	
Fig. (14):	Box plots showing distribution of SWMAs in different myocardial segments in patients ICM	
Fig. (15):	Type of cardiomyopathy as identified by echocardiography in the two groups	
Fig. (16):	Resting myocardial perfusion imaging with 17-segments scoring of a 48 years male ICM patient showing uneven distribution	

List of Tables

Table No.	Title	Page	
Table (1):	Clinical and demographic data		
Table (2):	ECG findings in patients of the two groups	72	
Table (3):	Diagnostic accuracy of electrocardiography		
Table (4):	Echocardiographic findings in the two groups	74	
Table (5):	Diagnostic accuracy of SWMA distribution detected by echo-cardiography		
Table (6):	Findings of nuclear imaging in the two study groups		
Table (7):	Diagnostic accuracy of nuclear imaging	80	

INTRODUCTION

Cardiomyopathy is an anatomic and pathologic diagnosis associated with muscle or electrical dysfunction of the heart. Cardiomyopathies represent a heterogeneous group of diseases that often lead to progressive heart failure with significant morbidity and mortality. Cardiomyopathies may be primary (i.e., genetic, mixed, or acquired) or secondary (e.g., infiltrative, toxic, inflammatory). Major types include dilated cardiomyopathy, hypertrophic cardiomyopathy, cardiomyopathy, restrictive and arrhythmogenic right ventricular cardiomyopathy (Wexler, et al., 2009).

difficult make clinical to an accurate resulting identification of heart failure from ventricular function, but it is important to do so because of the need to relieve symptoms. A substantial number of patients with heart failure have normal ECG results. In other patients with apparent heart failure, echocardiography provides extra information on the nature of the cardiac disease that affects management. In addition, providing appropriate treatment is important in patients affected more severely (ejection fraction <35-40%), in whom treatment can significantly reduce the mortality rate (Burianova, et al., 2009).

For most patients with heart failure, a search for underlying ischemia and viability would be an appropriate clinical strategy at some point in their evaluation. If substantial ischemia or viability of dysfunctional territories is found in the setting of vessels technically amenable to revascularization, the literature would suggest a clinical benefit from revascularization (*Ficaro, et al., 2010*).

Myocardial structure, perfusion, and function are routinely assessed with echocardiography, nuclear imaging techniques, or cardiac magnetic resonance imaging. Two-dimensional echocardiography including Doppler flow study is an established technique for assessment of left ventricular (LV) size and function. Information on myocardial structure is gained from observation of abnormalities in end-diastolic myocardial wall thickness (e.g., too thin or too thick), and information on myocardial function is obtained via assessment for regional myocardial wall motion abnormalities (*Chandarana*, et al., 2010).

Although SPECT tracers to image myocardial blood flow are commonly referred to as perfusion tracers, they require viable myocyte cell membranes for uptake and retention. Thus, the uptake and retention of these tracers do reflect regional flow differences, but myocyte cell membrane integrity is also a prerequisite (*Dilsizian*, *et al.*, 2009).

AIM OF THE WORK

The aim of the study is to estimate the value of echocardiography versus myocardial nuclear imaging, in differentiating ischemic cardiomyopathy (ICM) from dilated cardiomyopathy (DCM), to define patients who would benefit from coronary intervention.

DILATED CARDIOMYOPATHY

Introduction

Dilated cardiomyopathy is characterized by dilation and impaired contraction of one or both ventricle. Affected patients have impaired systolic function and may or may failure. develop overt heart The presenting not manifestations can include atrial and/or ventricular arrhythmias, and sudden death can occur at any stage of the disease (Elliott, 2000).

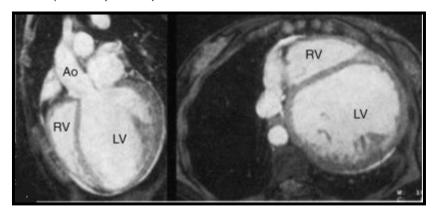


Fig. (1): Cardiac Magnetic resonance imaging of dilated cardiomyopathy, Hare JM: Etiologic basis of congestive heart failure.

(In Colucci WS [ed]: Philadelphia, Springer, Current Medicine

Group, 2008, pp 29-56)

Definition

In 2008, the European Society of Cardiology defined cardiomyopathy as: "A myocardial disorder in which the heart muscle is structurally and functionally abnormal in the absence of coronary artery disease, hypertension,

valvular disease and congenital heart disease sufficient to explain the observed myocardial abnormality" (*Elliott, et al, 2008*).

A diagnosis of dilated cardiomyopathy requires evidence of dilatation and impaired contraction of the left ventricle or both ventricles (e.g., left ventricular ejection fraction <40 percent or fractional shortening less than 25 percent) (*Luk, et al, 2009*).

Clinical Presentation

Most patients present between the ages of 20 and 60, but dilated cardiomyopathy can occur in children and older adults. Affected patients can present in a number of different ways. Symptoms of heart failure-progressive dyspnea with exertion, impaired exercise capacity, orthopnea, paroxysmal nocturnal dyspnea, and peripheral edema-are most common. Other presentations include the incidental detection of asymptomatic cardiomegaly and symptoms related to coexisting arrhythmia, conduction disturbance, thromboembolic complications, or sudden death (*Dec*, 1994).

Etiology

Dilated cardiomyopathy can be caused by a variety of disorders. In many cases, however, no etiology can be found and the cardiomyopathy is deemed idiopathic. Where the relative frequency of the different causes in patients with initially unexplained cardiomyopathy was assessed in a review of 1230 patients in a study carried out by Johns Hopkins University in 2000 revealed:

Idiopathic	— 50 percent
Myocarditis	— 9 percent
 Ischemic heart disea 	se — 7 percent
 Infiltrative disease 	— 5 percent
 Peripartum cardiom; 	yopathy — 4 percent
Hypertension	— 4 percent
 HIV infection 	— 4 percent
 Connective tissue di 	sease — 3 percent
 Substance abuse 	— 3 percent
 Doxorubicin 	— 1 percent
Other	— 10 percent
	(Felker, et al., 2000)

A. Infectious Causes of Cardiomyopathy

A variety of infectious organisms can lead to myocarditis and dilated cardiomyopathy.

Viral Cardiomyopathy

Viral infection is the most common cause of myocarditis and has been implicated in the development of dilated cardiomyopathy. Viruses known to involve the myocardium include parvo virus B19, human herpes virus 6, coxsackie virus, influenza virus, adeno virus, echo virus, cytomegalo virus, and human immunodeficiency virus. The initial immune response limits the degree of viremia early during infection and protects against myocarditis. If, however, this response is insufficient, the virus may not be eliminated and myocyte injury may ensue (*Bowles, et al.*, 2003).

HIV Infection

Heart disease associated with HIV infection is being recognized with increasing frequency. The proposed mechanisms of cardiac damage include drug toxicity, secondary infection, myocardial damage by HIV itself, and an autoimmune process induced by HIV itself or in association with other cardiotropic viruses such as coxsackie virus, cytomegalo virus, or Epstein-Barr virus (Sani, 2008).

Chagas Disease

A protozoan infection due to Trypanosoma cruzi, is the leading cause of dilated cardiomyopathy in Central and South America. It is characterized clinically by an acute myocarditis, cardiac enlargement, tachycardia, and nonspecific ECG abnormalities including right bundle branch block and premature ventricular contractions. Patients can develop left ventricular apical aneurysms that are pathognomonic for this disease (*Sabino*, *et al.*, *2013*).

Lyme disease

Cardiac involvement with Lyme disease is usually manifested as a conduction abnormality. Cardiac muscle dysfunction can also occur; it is often self-limited and mild, leading to transient cardiomegaly or pericardial effusion on echocardiogram or chest x-ray. However, occasional patients develop symptomatic myocarditis and dilated cardiomyopathy (*Fish*, *et al.*, 2008).

B. Genetic causes of dilated cardiomyopathy

Among patients with idiopathic dilated cardiomyopathy, it is estimated that up to 50 percent have familial disease. No clinical or histologic criteria, other than family history and careful examination of relatives (including those who are asymptomatic), have been derived

to distinguish familial from non-familial disease. The mode of inheritance is usually autosomal dominant, although autosomal recessive, X-linked, and mitochondrial inheritance have also been described (*Burkett*, *at al.*, 2005).

Dilated cardiomyopathies in patients who do not have a known family history of disease may also have a genetic basis (*Parks*, *et al.*, 2008).

Inherited Syndromes

Dilated cardiomyopathy can be a common and important component of a number of inherited disorders, including a number of neuromuscular diseases, hereditary hemochromatosis, and the hereditary sideroblastic anemias and thalassemias (*Modell, et al., 2008*).

Hypertrophic Cardiomyopathy

A small proportion of patients with HCM who survive the early risk of sudden death develop progressive myocardial wall thinning, a reduction in systolic performance, and an increase in left ventricular dimensions in the long term, resembling the morphologic and functional features of dilated cardiomyopathy (*Biagini, et al., 2005*).