

Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt (Alsharqia)

Thesis

Submitted for partial fulfillment of Master Degree in Nephrology

By

Mohammed mahmoudali

Diploma Of internal Medicine
Ain shams University

Under Supervision of

Prof. Dr. Magdy Mohamed SaedAlsharkawy Professor of Internal Medicine and Nephrology

rofessor of Internal Medicine and Nephrolog Faculty of Medicine – AinShamsUniversity

Dr. HeshamAtefAbouleil

Professor assistant of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Faculty of Medicin

Ain Shams University

First of all, thanks to Allah, the Most Gracious, Most Merciful, for success in achieving work in my life, and for guiding me and giving me the strength to complete this work the way it is.

I would like to express my deepest thanks to Prof Dr. Magdy Mohamed Saed Alsharkawy, Professor of Internal Medicine and nephrology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. he has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I would like to express my deepest thanks and gratitude to **Prof Dr. Hesham Atef Abouleil** assistant Professor of Internal Medicine and nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express great thanks and gratitude my**Dr. Yahya Makkeyah** Lecturer of Internal Medicine and nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, , for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

Mohammed Mahmoud Ali

Contents

1- List of abbreviationsI
2- List of tablesIII
3- List of figuresV
4- Introduction1
5- Aim of the work3
6- Review of literature
➤ Chapter 1:hemodialysis4-10
Chapter 2:anemia in hemodialysis patient11-29
➤ Chapter 3:mineral and bone disorder30-43
> Chapter 4:complications of hemodialysis44-65
7- Patients and Methods66-71
8- Results67-103
9- Discussion. 104-114
10- Summary and Conclusion
11- Recommendations119
12- References
13- Arabic summary 5-1

List of Abbreviations

Abbreviation	Name
ESRD	End-stage renal disease
EPO	Erythropoietin
Hgb	Hemoglobin
GFR	Glomerular filteration rate
HD	Hemodialysis
CKD	Chronic kidney disease
PD	Peritoneal dialysis
DOQI	Dialysis Outcomes Quality Initiative
ESA	erythropoiesis-stimulating agents
HMW-ID	high molecular weight iron-dextran
LMW-ID	low molecular weight iron-dextran
IL-6	interleukin 6
BMP-6	bone morphogenetic protein 6
TNF	tumor necrosis factor
MBD	mineral and bone disorder
PTH	parathyroid hormone
CV	cardiovascular
SHPT	secondary hyperparathyroidism

DM	diabetes mellitus
IDH	intradialytic hypotension
SBP	Systolic blood pressure
HES	Hydroxyethyl starch
HTN	Hypertension
RAAS	rennin-angiotensin aldosterone system
ACE	angiotensin converting enzyme inhibitors
ARB	angiotensin receptor blockers
MI	myocardial infarction
cTnT	Cardiac troponin T
DDS	Dialysis Disequilibrium syndrome
HIT	heparin-induced thrombocytopenia
LMWH	low molecule weight heparin
UFH	unfractioned heparin

List of Tables

Table No.	Subject	Page
1	Key components of hemodialysis prescription	6
2	Clinical care of patients receiving hemodialysis	10
3	When to evaluate hemodialysis patient for anemia	15
4	Over view of currently available phosphate binders	36
5	Potential strategies to improve control of dietary phosphorus intake and adherence to phosphate	37
6	Gender and age distribution in the study population	72
7	Different causes of ESRD in the study population	73
8	Different comorbidities in the study population	74
9	Work status in the study population	75
10	Dependency status in the study population	76
11	Frequency of HD sessions/ WK in the study	77
12	Duration of HD session in the study population	78
13	Sponsoring status in the study in the study poulation	79
14	Type of vascular acess in the study population	80
15	Frequency of acess failure in the study population	81
16	Hemoglobin category in the study population	82
17	History of blood transfusion in the study population	83
18	History of ESA therapy in the study population	84

19	ESA dose/ WK in the study population	85
20	History of iron injection in the study population	86
21	History of vitamin B complex use in the study	87
22	History of L- carnitine supplement in the study population	88
23	History vitamin D use in the study population	89
24	Vitamin D dose (ug/WK) in the study population	90
25	Average weight gain (KG) in the study population	91
26	Calcium levels in the study population	92
27	Phosphorus level in the study population	93
28	Calcium phosphorus product level in the study population	94
29	Types of complications during HD session in the study population	95
30	Viral status in the study population	96
31	Isolation of HBV +ve patients &HCV+ve patients	97
32	Criteria of dialysate used in the study population	97
33	Dialysate sodium (mmol/L) used in the study population	98
34	Dialysate potassium (mmol/L) used in the study population	99
35	Dialysate calcium (mmol/L) in the study population	100
36	Dialysate magnesium (mmol/L) in the study population	101
37	Anticoagulation type in the study population	102
38	Anticoagulation dose in the study population	103

List of Figures

Figure	Subject	
No.		
1	Gender distribution in the study population	72
2	Different causes of ESRD in the study population	73
3	Different comorbidities in the study population	74
4	Work status in the study population	75
5	Dependency status in the study population	76
6	Frequency of HD sessions/week in the study population	77
7	Duration of HD session in the study population	78
8	Sponsoring status in the study population	79
9	Type of vascular access in the study population	80
10	Frequency of access failure in the study population	81
11	Hemoglobin category in the study population	82
12	History of blood transfusion in the study population	83
13	History of ESA therapy in the study population	84
14	ESA dose/ WK in the study population	85
15	History of iron injection in the study population	86
16	History of vitamin B complex use in the study population	87
17	History of L- carnitine supplement in the study population	88
18	History vitamin D use in the study population	89

19	Vitamin D dose (ug/WK) in the study population	90
20	Average weight gain (KG) in the study population	91
21	Calcium levels in the study population	92
22	Phosphorus level in the study population	93
23	Calcium phosphorus product level in the study population	94
24	Types of complications during HD session in the study population	95
25	Viral status in the study population	96
26	Criteria of dialysate used in the study population	97
27	Dialysate sodium (mmol/L) used in the study population	98
28	Dialysate potassium (mmol/L) used in the study population	99
29	Dialysate calcium (mmol/L) in the study population	100
30	Dialysate magnesium (mmol/L) in the study population	101
31	Anticoagulation type in the study population	102
32	Anticoagulation dose in the study population	103

INTRODUCTION

Even though dialysis treatment is successful to ameliorate many of the clinical manifestations of the end stage renal disease (ESRD) and to postpone otherwise imminent death, dialysis patients still have higher mortality and hospitalization, as well as lower quality of life, compared with general population. The available clinical data have also shown that the overall mortality rate and outcomes vary substantially across facilities and countries(*Lopes et al.*,2007).

The observed variation in mortality across centers and countries raises the possibility that practices pattern may contribute to the variation in outcome. Also, the outcomes of dialysis patients can be modified by change in dialysis practice, suggesting that there is an association between practice pattern and outcome. Indeed, the dialysis outcomes and practice pattern study(DOPPS), initially performed in dialysis facilities from seven developed countries and now twelve ones, have greatly improving our understanding of dialysis practices that are associated with better outcomes (*Tentori et al.*, 2008).

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%-40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited(*Locatelli et al.*, 2004).

Appropriately then, the care of dialysis patients has been the prime focus of nephrology, particularly after the widespread availability of maintenance dialysis when it became evident that mortality of dialyzed patients was high and their quality of life far from adequate(*Eknoyan et al.*,2002).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. (Locatelli et al., 2004).

Compliance with clinical guidelines is an important indicator of quality and efficacy of patient care, at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding backinformation concerning current practice(*Cameron*, 1999).

End-stage renal disease (ESRD) is one of the main health problems in Egypt. Currently, hemodialysis represents the main mode for treatment of chronic kidney disease stage 5 (CKD5), previously called ESRD or chronic renal failure(*Afifi*, 1999).

Although hemodialysis is often used for treatment of ESRD, no practice guidelines are available in Egypt. Healthcare facilities are seeking nowadays to develop practice guidelines for the sake of improving healthcare services(*Ministry of Health and Population*, 1999).

AIM OF THE WORK

Tostudy the pattern of current clinical practice in hemodialysis prescription inregular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription , stressing on anemia, bone disease management and adequacy of dialysis.

Hemodialysis

Fifty years ago, Belding Scribner and hiscolleagues at the University of Washingtondeveloped a blood-access device using Teflon-coatedplastic tubes, which facilitated the use of repeated hemodialysis as a life-sustaining treatment for patients with uremia. The introduction of the Scribner shuntas it became known, soon led to the development of a variety of surgical techniques for the creation of arteriovenous fistulas and grafts. Consequently, hemodialysis hasmade survival possible for more than a million people throughout the world whohave end-stage renal disease (ESRD) with limited or no kidney function. The expansion of dialysis into a form of long-term renal-replacement therapy transformed the field of nephrology and also created a new area of medical science, which has been called the physiology of the artificial kidney (*Scribner et al.*, 1960).

Goals of Hemodialysis:

Dialysis is defined as the diffusion of molecules in solutionacross a semipermeablemembrane along an electrochemical concentration gradient. The primary goal of hemodialysis is to restore the intracellular and extracellular fluid environment thatis characteristic of normal kidney function. This is accomplished by the transport of solutes such as urea from the blood into the dialysate and by the transport of solutes such as bicarbonate from the dialysate into the blood. Solute concentration and molecular weight are the primary determinants of diffusion rates.Small molecules, such as urea, diffuse quickly, whereas compartmentalized and larger molecules, such as phosphate, β2-microglobulin, and albumin, and proteinboundsolutes, such as p-cresol, diffuse much more slowly. In addition diffusion, solutes may pass through pores in the membrane by means of aconvective process driven byhydrostatic or osmotic pressure gradients a process called ultrafiltration. During ultrafiltration, there is no change in solute concentrations; its primary purpose is the removal of excess total body water. (*Himmelfarb and Ikizler*, 2010)

For each dialysis session, the patient's physiological status should be assessed so that the dialysis prescription can be aligned with the goals for the session. This is accomplished by integrating the separate but related components of the dialysis prescription to achieve the desired rates and total amount of solute and fluid removal. By replacing kidney excretory function, dialysis is intended to eliminate the symptom complex known as the uremic syndrome, although ascribing particular cellular or organ dysfunction to the accumulation of specific solutes in uremia has proved to be difficult (*Locatelliet al.*, 2002).