

T Cell Receptor Excision Circles (TRECs) as a Marker of Thymic Output

Thesis

Submitted for partial fulfillment of MD in Clinical and Chemical Pathology

By

Lamyaa Elsayed Mehriz Ali Salem

MB BCh, MSc. Clinical & Chemical Pathology

Supervisors

Professor/ Hala Ahmed Sherif Talkhan

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Professor/ Salwa Ibrahim Bakr

Professor of Clinical and Chemical Pathology Faculty of Medicine – Ain Shams University

Professor/ Afaf Abdel Alim Mostafa

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Doctor/ Nesrine Ali Mohamed Omar

Assisstant professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

STDF Project

Faculty of Medicine Ain Shams University 2016

First of all praise and thanks to ALLAH providing me with time and effort to accomplish this thesis.

I wish to express my deep gratitude to Prof. Dr. Hala Ahmed Talkhan, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her enthusiasm, keen supervision, continuous encouragement and meticulous guidance and follow up throughout this work.

I am greatly indebted to Prof. Dr. Salwa Ibrahim Bakr, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her sincere contribution in this work with her time and effort.

I would like to express my profound thanks and great gratitude to **Prof. Dr.**Afaf Abdel Alim Mostafa Prof. of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her sincere help, and great patience.

A special tribute and cordial thanks are paired to **Dr.** Nesrine Aly Mohamed Omar, Assisstant professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her authentic guidance and meticulous supervision.

Finally, my acknowledgerment and love to my father I mother, my outstanding husband and daughters for their patience, support and kind help throughout my career.

Lamyaa Salem

LIST OF THE CONTENTS

List of Tables	I
List of Figures	<u>III</u>
List of Abbreviations	<u>V</u>
Introduction	1
Aim of the work	<u>4</u>
Thymus and markers of thymic output	<u>5</u>
V(D) j recombination and formation of excision circles	<u>17</u>
Applications of TRECs and KRECs in immune	<u>42</u>
deficiency diseases	
Subjects and Methods	<u>89</u>
Results	<u>125</u>
Discussion	<u>140</u>
Summary & Conclusion	<u>151</u>
Recommendation	<u>154</u>
References	<u>156</u>
Arabic Summary	-

LIST OF TABLES

Table No.	Title	Page No.
(1)	Infections commonly associated with immune defects	47
(2)	The 10 warning signs of primary immune deficiency in children	49
(3)	Immune deficiency disease related (IDR) score	49
(4)	American Academy of Allergy Asthma and Immunology (AAAAI) guiding principles for IVIG in PID	55
(5)	Rationale for newborn screening for SCID	67
(6)	Use of TRECs quantification in different clinical settings	86
(7)	Setup of PCR reaction for colonies	103
(8)	Cycling Protocol	103
(9)	Mass of plasmid needed for each standard dilution point	116
(10)	Calculation of plasmid concentrations needed for each dilution point.	116
(11)	Dilution calculations	117
(12)	Sample real time PCR plate	120
(13)	Volume of reagents needed for indicated wells	121
(14)	Sequence of primers and probes for the real time PCR assay	121
(15)	Discriptive statistics of subjects in the study according to age	128
(16)	Medians, percentiles of TRECs and KRECs among the study age groups	128
(17)	Comparison of the four studied parameters between the four quartiles	130
(18)	Correlation between TRECs and KRECs within each quartile and age	131
(19)	Medians, percentiles of KRECs copies/ml of blood among subquartiles Q3-1 and Q3-2	132
(20)	Statistical comparison between the subquartiles (Q3-1 and Q3-2) regarding KRECs copies/ ml of blood	132
(21)	Correlation between KRECs copies/ml of blood and age within Q3-1 and Q3-2	132

(22)	Medians, percentiles of TRECs copies/ million of cells and TRECs copies/ml of blood among subquartiles Q4.1 and Q4.2	133
(23)	Statistical comparison between the subquartiles (Q4-1 and Q4-2) regarding TRECs copies/ million of cells and TRECs copies/ ml of blood	134
(24)	Correlation between both TRECs copies /million of cells and TRECs copies /ml of blood and age within Q4-1 and Q4-2	134
(25)	Statistical comparison between the four studied quartiles regarding sex distribution	137

LIST OF FIGURES

Fig. No.	Title	Page No.
(1)	Organization of Ig gene loci	19
(2)	Organization of TCR gene loci	19
(3)	The TCR δ chain locus lies within the TCR α locus	20
(4)	Expression of membrane-bound α β heterodimer during TCR DNA rearrangement	21
(5)	Heavy chain gene rearrangement and processing of RNA transcript to generate function μ or δ heavy chain protein	22
(6)	Nucleotide sequence of RSSs	23
(7)	Recombination of V and J exons may occur by deletion of intervening DNA and ligation of the V and J segments	24
(8)	During V(D)J recombination, two pairs of coding segments with defined signal sequences	27
(9)	Hairpin formation, P nucleotide and N nucleotide addition during VDJ recombination of lymphocytes	29
(10)	Sequential rearrangements in the T-cell receptor (TCR)- α/δ locus generate signal joint T-cell receptor excision circles (sjTRECs) and $V\alpha$ to $J\alpha$ rearrangements	31
(11)	V(D)J recombination on the IGK locus results in a VJk coding joint. Subsequent rearrangement between the intron RSS and the Kde elements	33
(12)	Rearrangements associated with antigen receptors occur only in T and B cells	34
(13)	Human B- and T- cell differentiation stages including V(D)J recombination bars and genetic defects underlying PID that result in impaired precursor differentiation	50

Fig. No.	Title	Page No.
(14)	Neonatal Screening for SCID Using TREC Content. The Guthrie card, used to collect heel-stick blood	74
(15)	Testing strategy for excision circle assays in neonatal screening. Flowchart depicting the testing strategies for results returned by the combined TRECs–KRECs assay	79
(16)	Different layers after Ficollhypaque separation of venous blood	91
(17)	QIAamp DNA Blood Mini Kit Spin column extraction Procedure	95
(18)	Triple-insert plasmid map. Triple-insert plasmid map showing the position of TREC, KREC, TCRAC (TRAC) sequences	96
(19)	Transformation of chemically competent E-coli	97
(20)	Master plate with colonies transformed with triple insert plasmid	102
(21)	End point PCR showing 5 different colonies from 5 different compartments successfully transformed with triple insert plasmid	104
(22)	Setup of NucleoBond® Xtra Midi Columns A: Setup for clarification, loading, and first washing step; B : Setup for elution	111
(23)	End point PCR showing in Lanes 1 and 2 more than one band of undigested plasmid (circular, coiled and supercoiled). Lane 3 is the DNA ladder (19-1114) base pairs, Lane 4 shows one band of the completely linearized plasmid	112
(24)	A PCR carry-over blocking cabinet used for manipulating the plasmid DNA separately	118
(25)	Correlation between age and TRECs copies/ million of cells	126
(26)	Correlation between age and TRECs copies/ ml of blood	126
(27)	Correlation between age and KRECs copies/ million of cells	127

Fig. No.	Title	Page No.
(28)	Correlation between age and KRECs copies/ ml of blood	127
(29)	Box-Plot Chart showing TRECs copies/ million of cells among the Study Age Groups	135
(30)	Box-Plot Chart showing TRECs copies/ml of blood among the Study Age Groups	135
(31)	Box-Plot Chart showing KRECs copies/ million of cells among the Study Age Groups	136
(32)	Box-Plot Chart showing KRECs copies/ ml of blood among Study Age Groups	136
(33)	Sex distribution among each quartile as regards TRECs copies/million of cells	137
(34)	Sex distribution among each quartile as regards TRECs copies/ml of blood	138
(35)	Sex distribution among each quartile as regards KRECs copies/million of cells	138
(36)	Sex distribution among each quartile as regards KRECs copies/ ml of blood	139

LIST OF ABBREVLATIONS

Abbrev.	Full term
AAAAI	American Academy of Allergy Asthma and Immunology
ADA	Adenosine deaminase deficiency
AR	Autosomal recessive
BCG	Bacille Calmette and Guerin
BCR	B-cell receptor
BM	Bone marrow
BMT	Bone marrow transplantation
bp	Base pairs
BTK	Bruton tyrosine kinase
°C	Degree Celcius
C	Constant
Cacl2	Calcium chloride
CBC	Complete blood picture
CD	Cluster of differentiation
cDNA	Complementary DNA
CID	Combined immunedificiency
CJ	Coding joint
CMV	Cytomegalovirus
Ct	Cycle Threshold
CVID	Common variable immune deficiency
D	Diversity

Abbrev.	Full term
DBS	Dried blood spot
DGS	DiGeorge syndrome
DNA	Deoxy ribonucleic acid
DNA-PKcs	DNA dependant protein kinase catalytic subunit
EDTA	Ethylene diamine tetra acetic acid
ELISA	Enzyme linked immunosorbant assay
ESID	European Society for Immunodeficiencies
FACS	Flourescence-activated cell sorting
FHL	Familial haemophagocytic lymphohistiocytosis
GVHD	Graft versus host disease
HIV	Human immunedeficiency virus
HLA	Human leucocyte antigen
HMG	High mobility group proteins
HSCT	Haematopoietic stem cell transplantation
IDR	Immunedificiency related
IgH	Immunoglobulin heavy chain
IGH	Immunoglobulin heavy chain
IgK	Immunoglobulin kappa light chain
IGK	Immunoglobulin kappa light chain
IGKDEL	Immunoglobulin kappa deleting element or like
IgL	Immunoglobulin lambda light chain
IGL	Immunoglobulin lambda light chain
IQR	Interquartile range
IVIG	Intravenous immunoglobulin

Abbrev.	Full term
J	Joining
KRECs	Kappa deleting recombination excision circles
LB	Luria-Bertani
LOAF	Late onset antibody failure
Mg	Magnesium
МНС	Major histocompatibility complex
Mn	Manganese
NBS	Newborn screening
NHEJ	Non homologous end joining
NK	Natural killer
NTC	Non template control
OD	Optical density
OS	Overall survival
PBMCs	Peripheral blood mononuclear cells
PCR	Polymerase chain reaction
PID	Primary immunodeficiency disease
PJP	Pneomocystis jiroveci pneumonia
PKU	Phenylketonuria
Pol	Polymerase
PTK	Protein tyrosine kinase
Q	Quartile
RAG	Recombination activation gene
RNA	Ribonucleic acid
Rpm	Rotation per minute

Abbrev.	Full term
RQ-PCR	Real time quantitative PCR
RSS	Recombination signal sequences
RSV	Respiratory syncytial virus
RTE	Recent thymic emigrants
SCID	Severe combined immunodeficiency
SCT	Stem cell transplantation
Sj	Signal joint
T21	Trisomy21
TCR	T cell receptor
TCR- γ (TCRG)	T cell receptor gamma chain
TCR- δ (TCRD)	T cell receptor delta chain
TCR-α (TCRA)	T cell receptor alpha chain
TCR-β (TCRB)	T cell receptor beta chain
TdT	Terminal deoxynucleotidyl transferase
TRA	T cell receptor alpha gene
TRAC	T cell receptor alpha constant gene
TRBV	T cell receptor beta variable chain
TRECs	T cell receptor excision circles
TRIS	Trisaminomethane
URD	Unrelated donor
V	Variable

Abbrev.	Full term
WAS	Wiskott Aldrich syndrome
WHO	World health organization
XLA	X linked agammaglobulineamia
XRCC4	X-ray repair cross-complementing protein 4
δ Rec	Delta recombination element

INTRODUCTION

Primary immunodeficiency diseases (PIDs) are inherited defects of the innate or adaptive arms of the immune system that lead to an increase in the incidence, frequency, or severity of infections. Major efforts are currently being undertaken to develop methods for detection of PIDs in the neonatal period (*Uzzaman and Fuleihan*, 2012).

Severe combined immunodeficiency (SCID) in particular, is fatal in infancy unless affected infants can be diagnosed before the onset of devastating infections and provided with an immune system through allogenic hematopoietic cell transplantation, enzyme replacement, or gene therapy. Newborns with SCID typically appear normal at birth, lack a family history or any clinical clues before the onset of infections (*Puck*, 2011).

SCID which is one of the inborn errors of immune function represents a group of conditions characterized by blocks in T-cell development, which lead to functional deficiencies in both T-cells and B-cells (*Baker et al.*, 2010).

T- and B-lymphocytes are unique in their ability to create a receptor by genomic rearrangement of their antigen receptor genes via V (D) J recombination. On one hand, DNA strand breakage

during the thymic and bone marrow maturation processes of the T cell receptor (TCR) α/β chains and the B cell receptor (BCR) light and heavy chains, respectively, creates functional receptors (i.e., the formation of coding joint recombination sites), while, on the other hand, it creates byproducts (i.e., the formation of signal joint recombination sites) termed TCR excision circles (TRECs) and kappa-deleting recombination excision circles (KRECs), respectively (*Ye and Kirschner*, 2002).

The DNA circles formed are stable and are maintained after cell division, but because they do not replicate, they become diluted as T cells proliferate through mitotic division (*Puck*, 2012).

The determination of thymic output by quantification of TRECs is extensively used as an accurate measure of thymic function and T cell neogenesis, and this analysis was therefore suggested as a diagnostic tool for T cell immunodeficiency (Amariglio et al., 2010), for neonatal screen assay to detect SCID immediately after birth (Puck, 2007), and as being the most predictive factor for long-term T cell immune reconstitution after bone marrow transplantation (BMT) (Roifman et al., 2008).

KRECs form the extra-chromosomal (episomal) excision product of the immunoglobulin gene rearrangement. Similar to TRECs, these episomal products cannot replicate in the cell. KRECs appear to be highly stable structures, which can persist for