Controlled Delivery of Ondansetron from Lipid Carriers

A thesis submitted by

Mai Mansour SolimanSaleh

For Partial Fulfillment of the requirements for

The Degree of Doctor of Philosophy

In

Pharmaceutical Sciences

(Pharmaceutics)

Under the supervision of

Prof. Dr. Abd El-Hameed El-ShamyProf. Dr. NahedDaoudMortada

Prof. of Pharmaceutics and
Industrial Pharmacy. Faculty of
Pharmacy. Ain Shams University
Pharmacy. Ain Shams University

Prof. Dr. Samar Mansour Holayel Ass. Prof. Dr. Amany Osama Kamel

Prof. of Pharmaceutics and
Industrial Pharmacy. Faculty of
Pharmacy. Ain Shams University

Ass. Prof. of Pharmaceutics and
Industrial Pharmacy. Faculty of
Pharmacy. Ain Shams University

Department of Pharmaceutics-Faculty of Pharmacy
Ain Shams University
(2017)

Acknowledgment

First and foremost thanks to **Allah** by the grace of whom this work was achieved.

It is my proud privilege to release the feelings of gratitude to several persons who helped me directly or indirectly to conduct this thesis.

My deepest gratitude to **Prof. Dr. Abdel Hamid Abdallah El Shamy**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for his valuable advices and kindness, we miss you.

It is a genuine pleasure to express my deep sense of thanks and gratitude to my mentor, guide and mother **Prof. Dr. Nahed Daoud Mortada**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University. Her dedication, keen interest, continuous scientific advices and love have all helped me to accomplish this work, thank you.

I am also deeply grateful to **Prof. Dr. Samar Mansour Holayel,** Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her support and words of encouragement. Her mentoring enthusiasm and dynamism have been especially valuable and pushed me along the way.

Immeasurable appreciation and deepest gratitude to **Assist. Prof. Dr. Amany Osama Kamel**, Assistant Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her valuable advices, careful reading of the thesis, instructive supervision. Her scholar suggestions and scientific approach have helped me a lot to finish this work, thanks.

I owe a deep sense of gratitude to **Assist. Prof. Dr. Rihab Osman Ahmed**, Assistant Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for her valuable support. Her prompt inspirations, suggestions along with kindness, enthusiasm and love have enabled me to complete my thesis.

I would like to express my deep thanks to **Dr. Ahmad Hassan Elshafee**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, for his great help in conducting the in vivo experiments.

The completion of this thesis couldn't have completed without the support, kindness and love of my friends **Dr. Heba Gad**, **Eman el Marakby** and **Yasmine Naguib**.

I also thank all my colleagues in the Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, who have more or less contributed to the fulfillment of this work. I will always be indebted to them.

I would like to express my deep thanks and love to all my Family members, my mother, my father, my husband and my beloved daughters for their continuous support, unending love and respect.

Finally, special thanks to anyone and everyone who offered me encouragement, a loving reproach, constructive criticism, quality time, a shoulder on which to lean, a place of rest, a genuine smile, and an avenue to be of assistance.

This study has indeed helped me greatly to explore more knowledgeable avenues that sure will help me in my future career.

Mai Mansour Soliman 2017

Dedication

I dedicate this thesis to my soul mates, my beloved daughters, Marium & Salma.

بسم الله الرحمن الرحيم

"وأنزل الله عليك الكتاب والحكمة وعلمك مالم تكن تعلم وكان فضل الله عليك عظيما"

صدق الله العظيم سورة النساء آية 113

List of Contents

Item	Page
List of Abbreviations	VI
List of Tables	VIII
List of Figures	XI
Abstract	XVII
General Introduction	1
Scope of Work	21
Chapter I: Preliminary study for the preparation of	22
ondansetron-loaded cubosomes	
• Introduction	22
• Experimental	27
• Methodology	29
I-UV scanning of Ondansetron in phosphate buffer saline pH 7.4	29
II-Construction of calibration curve of Ondansetron in phosphate buffer saline pH 7.4	29
III- Preparation of cubosomes	29
A- Screening of different lipids for cubosomes preparation	29
B-Method of preparation of cubosomes	29
C-Characterization of the prepared cubosomes	30
1- Visual assessment	30
2- Morphology	30
a- Polarized optical microscopy	30
b-High resolution transmission electron microscopy	31
IV- Preliminary study of optimum conditions for the preparation of parenteral Ondansetron nanoparticles	31
A- Determination of particle size, size distribution and zeta potential	31
B-Determination of entrapment efficiency percent of Ondansetron	31
Results and Discussion	33
I- UV spectrum of Ondansetron in phosphate buffer saline pH 7.4	33
II-Calibration curve of Ondansetron in phosphate buffer saline pH 7.4	33
III- Screening of different amphiphilic lipids for cubosomes preparation	35

Item	Page
A- Visual assessment	35
B- Morphology	36
1-Polarized optical microscopy	36
2-High resolution transmission electron microscopy (HR-TEM)	41
IV-Optimum conditions for parenteral Ondansetron nanoparticles preparation	50
A-Effect of stabilizer type	50
B-Effect of drug amount	54
C-Effect of lipid: stabilizer ratio	55
D-Effect of the stabilizer solvent	57
• Conclusion	58
Chapter II: Preparation and evaluation of optimized ondansetron-loaded nanoparticles	60
• Introduction	60
• Experimental	62
Methodology	64
I- Preparation of optimized Ondansetron nanoparticles	64
A-Experimental design	64
B-Method of preparation	64
C-Data analysis and optimization	64
II- Evaluation of the prepared nanoparticles according to the factorial design	67
A-Determination of particle size and size distribution	67
B-Determination of Ond nanoparticles entrapment efficiency	67
C-Check point analysis and model validation	67
III- Atomic force microscopy	68
IV- In vitro release of Ondansetron	69
V- Study of the effect of storage on Ondansetron nanoparticles	69
VI-Statistical analysis	69
Results and Discussion	70
I- Data analysis and optimization	70
A-Particle size response	72
1-The fit summary of the model	72
2-PS model validation	75
3-ANOVA analysis for particle size model	77
B-Polydispersity index response	86

Item	Page
1-The fit summary of the model	86
2-PDI model validation	89
3-ANOVA analysis for PDI model	90
C- Entrapment efficiency percentage response	98
1-The fit summary of the model	98
2-EE% model validation	101
3-ANOVA analysis for EE% model	102
II-Atomic force microscopy	109
III-In vitro release study	116
IV-Effect of storage on selected Ondansetron nanoparticles	120
• Conclusion	122
Chapter III: Enhancement of stability of ondansetron- loaded nanoparticles	124
• Introduction	124
Experimental	133
Methodology	135
I-Drying of selected Ondansetron formulae	135
A-Freeze drying	135
B- Spray-drying	137
II-Characterization of the dried Ondansetron formulae	139
A- Determination of yield percent	139
B- Determination of powder flow	139
C- Determination of the reconstitution time	140
D- Determination of Particle size, size distribution and zeta potential	140
E- Determination of entrapment efficiency percent	140
F- Scanning electron microscopy (SEM)	141
G- Thermogravimetric analysis (TGA)	141
H- Differential scanning calorimetry (DSC)	141
I- X-ray powder diffraction (XRPD)	141
J- <i>In vitro</i> release of Ondansetron from freeze-dried and spray-dried formulae	141
K- Sterilization of selected Ondansetron nanoparticles using gamma irradiation	142
1- Gamma irradiation of selected Ondansetron-loaded nanoparticles	142
2- Characterization of irradiated Ondansetron-loaded nanoparticles	142
L- Stability studies	142
III-Statistical analysis	142

Item	Page
Results and Discussion	143
I-Yield percent	143
A-Yield percent of freeze-dried Ondansetron formulae	143
B-Yield percent of spray-dried Ondansetron formulae	145
II-Powder flow	149
A-Angle of repose of freeze-dried Ondansetron formulae	149
B-Angle of repose of spray-dried Ondansetron formulae	151
III- The reconstitution time of dried Ondansetron formulae	155
A-Reconstitution time of freeze-dried Ondansetron formulae	155
B-Reconstitution time of spray-dried Ondansetron formulae	157
IV- Particle size, size distribution and zeta potential of dried Ondansetron formulae	159
A-Particle size, size distribution and zeta potential of freeze-dried Ondansetron formulae	159
B-Particle size, size distribution and zeta potential of spray- dried Ondansetron formulae	163
V- Entrapment efficiency percent of dried Ondansetron formulae	167
A-Entrapment efficiency % of freeze-dried Ondansetron formulae	167
B-Entrapment efficiency % of spray-dried Ondansetron formulae	169
VI-Morphology of selected dried Ondansetron formulae	173
VII-Thermogravimetric analysis of selected dried Ondansetron formulae	177
VIII- Differential scanning calorimetry (DSC)	179
A-DSC of freeze-dried formulae	179
B-DSC of spray-dried formulae	181
IX- X-ray powder diffraction (XRPD)	183
X-In vitro release study	187
XI- Characterization of irradiated nanoparticles	191
XII- Stability Study	192
Conclusion	194
Chapter IV: In vivo studies on Ondansetron-loaded nanoparticles	196
• Introduction	196
• Experimental	198
• Methodology	200

Item	Page
I- LC-mass assay of Ondansetron in rat plasma	200
A- Construction of the calibration curve on Ondansetron in rat plasma	200
B- Sample preparation	200
C- Chromatographic conditions	200
II-Pharmacokinetic Study	201
A- Administration of Ondansetron to rats	201
B- Pharmacokinetic analysis	202
C- Statistical analysis	202
III- Tissue tolerance test	203
Results and Discussion	204
I- LC-mass assay in rat plasma	204
A- Calibration curve of Ondansetron in rat plasma	205
B- Pharmacokinetic study	206
II- Histological evaluation	212
• Conclusion	217
Summary	218
References	228
Arabic summary	259

List of Abbreviations

5HT ₃	5-hydroxytryptamine
2FI	2 factor interaction
AFM	Atomic force microscopy
ANOVA	Analysis of variance
AUC	Area under the curve
AUMC	Area under the curve Area under the moment curve
CPP	Critical packing parameter
D	Dextran
DGMO	Diglycerolmonooleate
DLS	Dynamic light scattering
DPPC	Dipalmitoylphosphatidylcholine
DPPG	- · · · · · ·
	Dipalmitoylphosphatidylglycerol
DSC	Differential scanning calorimetry
EE%	Entrapment efficiency % Freez-dried
F	
GML	Glycerylmonolinoleate
GMO	Glycerylmonooleate
HLB	Hydrophilic-lipophilic balance
HR-TEM	High resolution transmission electron microscope
IM	Intramuscular
IPMs	Infinite periodic minimal surfaces
IS	Internal standard
IV	Intravenous
L	Leucine
LC-MS	Liquid chromatography-mass spectroscopy
LD	Leucine/Dextran mixture
LDC	Lipid drug conjugate
LLC	Lyotropic liquid crystals
MO	Monoolein
MRT	Mean residence time
NA	Not applicable
NLC	Nanostructred lipid carriers
nm	Nanometer
Ond	Ondansetron
P188	Poloxamer 188
P407	Poloxamer 407
PB	Phosphate buffer
PBS	Phosphate buffer saline
PCs	Phosphatidylcholines

PDI	Polydispersity index
PEG	Polyethylene glycol
PEO	Polyethylene oxide
PGs	Polyglycerols
PLA	Polylactic acid
PLGA	Polylactoglycolic acid
PONV	Post operative nausea and vomiting
PPO	Polypropylene oxide
PT	Phytantriol
RSM	Response surface methodology
RT	Reconstitution time
S	Spray-dried
SAXS	Small angle x-ray scattering
SD	Standard deviation
SE	Standard error
SEDDS	Self emulsifying drug delivery system
SEM	Scanning electron microscopy
SLN	Solid lipid nanoparticles
SMEDDS	Self microemulsifying drug delivery system
$T_{1/2}$	Half life
TEM	Transmission electron microscopy
TGA	Thermogravimetric analysis
VA	Visual assessment
XRPD	X-ray powder diffraction
Y%	Yield %
ZP	Zeta potential
μm	Micrometer

List of Tables

Number	Table name	Page
1	The composition of different Ondansetron- loaded formulae	32
2	Relationship between Ondansetron concentration and absorbance at 309 nm in PBS pH 7.4	34
3	Scores of visual assessment of nanoparticles prepared using different lipids	35
4	Effect of different variables on PS, PDI, ZP and EE% of Ondansetron-loaded nanoparticles	53
5	Factors and Levels employed for the full factorial design	65
6	Full factorial design matrix	66
7	Check point analysis formulae for model validation	68
8	Mean response values of Ondansetron-loaded nanoparticles according to the factorial design	71
9	Sequential sum of squares summary for particle size response model	72
10	PS response model summary statistics	73
11	Equations for PS Models of Ondansetron nanoparticles prepared with different lipids	75
12	Check point analysis results for particle size response	76
13	Summary of ANOVA results for particle size of Ondansetron nanoparticles according to the factorial design	79
14	Particle size of C1 and C28 at different steps during nanoparticle preparation	81
15	Sequential sum of squares summary for PDI response model	86
16	PDI response model summary statistics	87
17	Equations for PDI Models of Ondansetron nanoparticles prepared with different lipids	87
18	Check point analysis for PDI response	89
19	Summary of ANOVA for PDI of Ondansetron nanoparticles according to the factorial design	92

Number	Table name	Page
20	Sequential sum of squares summary for entrapment efficiency% response model	98
21	Entrapment efficiency% response model summary statistics	99
22	Equations for EE% of Ondansetron nanoparticles prepared by different lipids	99
23	Check point analysis results for EE% response	101
24	Summary of ANOVA for EE% of Ondansetron-loaded nanoparticles according to the factorial design	104
25	Cumulative percent Ondansetron released from selected formulations	118
26	Effect of storage on selected nanoparticles	120
27	Effect of spray drying process parameters on product properties	128
28	Freeze-dried Ondansetron formulae	136
29	Spray-dried Ondansetron formulae	138
30	Yield percent of freeze-dried Ondansetron formulae	144
31	Yield percent of spray-dried Ondansetron formulae	147
32	Flow properties of freeze-dried Ondansetron formulae	150
33	Flow properties of spray-dried Ondansetron formulae	153
34	Reconstitution time of freeze-dried Ondansetron formulae	156
35	Reconstitution time of spray-dried Ondansetron formulae	158
36	Particle size and zeta potential of Ondansetron formulae before and after lyophilization	162
37	Particle size, size distribution and zeta potential of Ondansetron formulae before and after spray drying	165
38	Entrapment efficiency percent of freeze-dried Ondansetron formulae	168
39	Entrapment efficiency percent of spray-dried Ondansetron formulae	170

Number	Table name	Page
40	Characteristics of the selected dried Ondansetron formulae \pm SD	172
41	Moisture content of selected dry powder nanoparticles	178
42	Cumulative percent released of Ondansetron from freeze-dried and spray-dried Ondansetron formulae	189
43	Cumulative percent released of Ondansetron from selected formulae at different time intervals	190
44	Effect of gamma irradiation on PS, Size distribution and entrapment efficiency of Ondansetron nanoparticles	191
45	Effect of storage on the stability of selected Ondansetron formulae	193
46	Relationship between Ondansetron concentrations and the peak area ratio of Ond/IS in spiked rat plasma	205
47	Mean Ondansetron concentration in rats plasma following LC/mass assay	209
48	Pharmacokinetic parameters of Ondansetron in rats after administration of different treatments	211