Assessment of Non-invasive Predictors of Gastric Varices in patients with liver cirrhosis

Thesis Submitted for Partial Fulfillment of the Master Degree in Tropical Medicine

By

Muhammad Abdel Rahman El-Zahaby

(M.B.B.CH. Ain Shams University)

Supervisors

Prof. DR. Mohamed Reda Mahmoud El-Wakil, MD

Professor of Tropical Medicine Faculty of Medicine Ain Shams University

DR. Ayman Youssef Ghali, MD

Assistant Professor of Tropical Medicine
Theodor Bilharz Research Institute

Faculty of Medicine
Ain Shams University
2009

<u>ACKNOWLEDGMENT</u>

First of All Thanks To ALLAH

I would like to express my profound gratitude to **Professor Doctor/ Mohamed Reda Mahmoud El-Wakil** Professor of
Tropical Medicine, Faculty of Medicine, Ain Shams University
for his most valuable advice and support throughout the whole
work and for dedicating much of his precious time to accomplish
this work.

I am also grateful to **Doctor/ Ayman Youssef Ghali**, Assistant professor of tropical medicine, Faculty of Theodor Bilharz Research Institute for his continuous encouragement, supervision and kind care.

I would like also to express my profound gratitude to Professor Doctor/ Ibrahim Mostafa Ibrahim, professor of tropical medicine, vice president of Theodor Bilharz Research Institute, vice president of the European society of gastrointestinal endoscopy, and Professor Doctor/ Mohamed Kamal Shaker Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University for dedicating much of their precious time to discuss this work.

My special thanks and deep obligation to **Professor Doctor/**Ahmad Sadek Abdel Fatah, professor of tropical medicine, head of
Hepatology and Gastroenterology department in Theodor Bilharz
Research Institute, for his unique effort, considerable assistance
and precious knowledge he offered me throughout the performance
of this work.

I am also grateful to **Doctor/ Mahmoud el Ansary**,
Assistant professor of tropical medicine, Faculty of Theodor
Bilharz Research Institute for his continuous encouragement and
considerable assistance to accomplish this work.

Many thanks to my father, my mother, my brother and my lovely wife for their support throughout my personal life and my work. Special thanks to all the rest of my family members, friends and to all staff members of Theodor Bilharz Research Institute.

ABSTRACT

Background: Identification of non-invasive predictors of varices will enable us to carry out upper gastrointestinal (GI) endoscope in selected group of patients thus avoiding unnecessary intervention and at the same time not missing the patients at risk of bleeding.

AIM: Assessment of non-invasive predictors of Gastric varices in patients with liver cirrhosis with no history of previous endoscopic or surgical intervention for portal hypertension.

METHODS: The study included 90 cirrhotic patients divided into three groups: patients with no varices, patients with esophageal varices and patients with gastric varices with or without esophageal varices. They all underwent a complete biochemical workup, upper gastrointestinal endoscopy and Doppler ultrasound examination.

RESULTS: Upon doing multiple regression analysis on these predictors: Child's classification *(child's C)*, Splenic bi-polar diameter $(\geq 15 \ cm)$, presence of ascites, presence of hepatocellular carcinoma (HCC), Portal Vein (PV) Diameter $(\geq 15 \ mm)$, abnormal PV Blood Flow Direction, PV Blood Flow Velocity $(< 10 \ cm/sec)$, PV Congestion Index $(\geq 0.15 \ cm/sec)$, Splenic Vein (SV) Diameter $(\geq 11mm)$, abnormal SV Blood Flow

Direction, SV Blood Flow Velocity ($< 14 \, cm/sec$), SV Congestion Index ($\ge 0.08 \, cm/sec$), Left Gastric Vein (LGV) detection, LGV Diameter ($\ge 8 \, mm$), abnormal LGV Blood Flow Direction, LGV Blood Flow Velocity ($\ge 13 \, cm/sec$) and detection of gastrorenal shunts (GRS). this model was found to be responsible for 82.5% of the incidence of gastric varices and this is extremely significant (P<0.001).

CONCLUSION: This model of non invasive predictors can significantly predict incidence of gastric varices.

LIST OF CONTENTS

	Title	Page
	INTRODUCTION	1
•	AIM OF THE WORK	4
•	REVIEW OF LITERATURE CHPTER 1 : Anatomical background, Causes, Pathophysiology and Vascular Biology of the Cells in Portal Hypertension.	5 5
	CHPTER 2 : Variceal bleeding as a complication of portal hypertension.	45
	CHPTER 3 : Diagnosis of Portal Hypertension in Cirrhotic patients.	82
•	PATIENTS AND METHODS	122
•	RESULTS	130
•	DISCUSSION	158
•	SUMMARY	169
•	CONCLUSION	171
•	RECOMMENDATIONS	172
•	REFERENCES	173
•	ARABIC SUMMARY	_

LIST OF FIGURES

Fig. No.	Title	Page
1	Distribution of portosystemic collaterals.	10
2	An illustration demonstrating classification of	27
	portal hypertension according to the site of flow	
	resistance	
3	Phenotypic features of HSCs activation during liver	33
	injury and resolution.	
4	Clinical Staging of Liver Cirrhosis	46
5	Diagram illustrating natural history of esophageal	52
	varices.	
6	Prophylaxis of variceal bleeding	53
7	Treatment options for esophageal varices.	64
8	(A) Normal portal venous blood flow	70
	(B) Portal venous blood flow in the presence of	
	portal hypertension	
9	Transhepatic splenic venogram.	71
10	Sites of Perforation by EGD.	91
11	Differential diagnosis of esophageal varices	94
12	Different shapes and sizes of esophageal varices	99
13	Cherry red spots and red wale markings in	100
	esophageal varices.	
14	Gastric fundal varices.	102
15	Types of gastric varices	102
16	Portal hypertensive gastropathy.	103
17	GAVE syndrome.	104
18	Pillcam Eso Device and Parameters.	121
19	Biochemical profile of the studied groups	142
20	Hematological tests of the studied groups	143
21	Child-Turcotte-Pugh score-classification_of the	144
	studied groups	
22	Trans-Abdominal Ultra-Sonographic findings of	146
	the studied groups	

Fig. No.	Title	Page
23	Trans-Abdominal Doppler Ultra-Sonographic findings of the Portal Vein (PV) in the studied groups	148
24	Trans-Abdominal Doppler Ultra-Sonographic findings of the Splenic Vein (SV) in the studied groups	150
25	Trans-Abdominal Doppler Ultra-Sonographic findings of the Left Gastric Vein (LGV) in the studied groups	152
26	Trans-Abdominal Doppler Ultra-Sonographic detection of GRS in the studied groups	153
27	The odds ratio (OR) for all predictors/variables predicting gastric varices	157

LIST OF TABLES

Table No.	Title	Page
1	Classification of portal hypertension.	11
2	Action of vasoactive agents on hepatic stellate cells.	34
3	Published Studies of Different Therapies for Gastric Varices.	74
4	Modified Child-Turcotte-Pugh scoring system.	124
5	Demographic features of the studied groups.	141
6	Biochemical profile of the studied groups.	142
7	Hematological tests of the studied groups.	143
8	Child-Turcotte-Pugh score-classification_of the studied groups.	144
9	Trans-Abdominal Ultra-Sonographic findings of the studied groups.	145
10	Trans-Abdominal Doppler Ultra-Sonographic findings of the Portal Vein (PV) in the studied groups.	147
11	Trans-Abdominal Doppler Ultra-Sonographic findings of the Splenic Vein (SV) in the studied groups.	149
12	Trans-Abdominal Doppler Ultra-Sonographic findings of the Left Gastric Vein (LGV) in the studied groups.	151
13	Trans-Abdominal Doppler Ultra-Sonographic detection of GRS in the studied groups	153
14	The odds ratio (OR) for all predictors/variables predicting gastric varices.	155

LIST OF ABBREVIATIONS

AASLD: American Association for the Study of Liver Disease

ALT : Alanine Aminotransferase

ANOVA: Analysis of Variance

ANP : Atrial Natriuretic PeptideAST : Aspartate Aminotranserase

AT-II : Angiotensin-II
CI : Congestion index

CSPH : clinically significant portal hypertension

CT : Computed tomography

EGD : esophgeo-gastro-duodenoscopy

eNOS : endothelial cell nitric oxide synthetase

ET-1 : endothelin 1

EUS : Endoscopic ultrasonography

EV : Esophageal varices

EVL : Endoscopic variceal ligationEVO : Endoscopic variceal obturation

EVS : Endoscopic variceal sclerotherapy

GAVE : Gastric antral venous ectasia

GI : Gastro-intestinal

GOV : Gastroesophageal varices

GRS : Gastrorenal shunts

GV : Gastric varices

HB : Hemoglobin levelHBV : Hepatitis B virus

HCC: Hepatocellular carcinoma

HCV: Hepatitis C virus

HFL : Hepatic focal lesionHSC : hepatic stellate cells

HVPG: Hepatic venous pressure gradient

IGV : Isolated gastric varices

IHVR : intrahepatic vascular resistance

iNOS : inducible form of nitric oxide synthetase

INR : International Normalization Ratio

IVC : inferior vena cavaLGV : Left gastric vein

MCP-1 : monocyte chemotactic protein 1

MELD : Model for End-stage Liver Disease

MMP-2 : metalloproteinase 2

MRI : Magnetic Resonance Imaging

nNOS : neuronal cells express constitutive nitric oxide

synthetase forms

NO : Nitric oxide

NOS : nitric oxide synthetase

NYHA : New York Heart Association

OR : Odds ratio

PC : Prothrombin concentrationPDGF : platelet-derived growth factor

PG: prostaglandins

PHG : Portal hypertensive gastropathy

PHT : Portal hypertension

PIGF : placental growth factor

Plt. : Platelet

PP : portal pressure

PPG : portal pressure gradient

PT : Prothrombin time

PV : Portal vein

PVCI: Portal vein congestion index

PVT : Portal vein thrombosis

PVV : Portal Vein Flow Velocity

RAAS : Renin Angiotensin activating system

RCTs: randomized controlled trials

SV : Splenic vein

SVCI : Splenic vein congestion index
 SVV : Splenic Vein Flow Velocity
 TGF-B : transforming growth factor B

TIPS : transjugular intrahepatic porto-systemic shunting

UII : urotensin II

WHVP : wedged hepatic vein pressure

INTRODUCTION

Liver cirrhosis is a major health problem in Egypt, especially complicating viral hepatitis (*El-Zayadi et al.*, 2005). Portal hypertension commonly accompanies the presence of liver cirrhosis. The development of esophageal varices (EV), gastric varices (GV) and portal hypertensive gastropathy (PHG) are the major complications of portal hypertension (*De Franchis & Primignani*, 2001).

Gastric varices (GV) are less prevalent than esophageal varices (EV), occurring in approximately 20% of patients with portal hypertension (PHT) with a reported incidence of bleeding of about 25% in 2 years, with a higher bleeding incidence for fundal varices (*Sarin et al.*, 1992).

Gastric varices are developed due to spontaneous portosystemic collaterals (left gastric, splenorenal and gastrorenal shunts) commonly developed between the splenic vein and gastric varices (*Watanabe et al.*, 1988). Thus GV is commonly classified based on their relationship with esophageal varices as well as their location in the stomach (*Sarin et al.*, 2001).

In 1996 the American Association for the Study of Liver Disease (*AASLD*) single topic symposium stated that cirrhotic patients should be screened for the presence of varices when portal hypertension is diagnosed (*Grace et al.*, 1998).

In Patients with compensated cirrhosis and no varices on the initial esophgeo-gastro-duodenoscopy (EGD), it should be repeated in 3 Y, if there is hepatic decompensation, EGD done at that time & repeated annually, Patients with small varices that have not bled and who are not receiving beta-blockers, EGD should be repeated in 2 years. If there is evidence of hepatic decompensation, EGD should be done at that time and repeated annually. In patients with small varices who receive beta-blockers, a follow-up EGD is not necessary (*Guadalupe et al.*, 2007).

However, this approach has two major limitations. Endoscopy is an invasive procedure and also the cost effectiveness of this approach is also questionable (*Brennan et al., 2003*), as only 9-36% of patients with cirrhosis are found to have varices on screening endoscopy. It may be more cost-effective to routinely screen patients at high risk for the presence of varices so as to reduce the increasing burden and procedure cost of endoscopy units (*Zoli et al., 1996*).