

On Using Computational Geometry Algorithms in Computer Graphics

Thesis
Submitted in Partial Fulfillment of the Requirements
Of the Award of the (M. Sc.) Degree
(Computer Science)

Presented by Fatma Said Abou Saleh Abdeo (B.Sc.2003)

Supervised By (Late) Prof. Dr. Mohamed Hamed El-Zahar

Ass. Prof. Sameh Samy Daoud Dr. Yasser Mohamed Abd El-Latif

Department of Mathematics Faculty of Science Ain Shams University

Submitted to
Department of Mathematics
Faculty of Science
Ain Shams University
CAIRO, EGYPT
2009

Acknowledgements

First of all, gratitude and thanks to **ALLAH** who always helps and guides us.

I would like to express my deepest thanks to my supervisor **Prof. Sameh Samy Daoud** for the discussions about this work. He provided many incisive observations which improved both the content and presentation immensely. In addition, I thank him for improving my writing skills.

Also, I would like to express my deep gratitude to my supervisor **Dr. Yasser Mohamed Abd El-Latif** for the huge amount of efforts he spent in guiding my research. He is always been there to share him quick wit, to clarify and enhance my thinking, and to spark new ideas.

Lastly, I would like to thank **my family** especially **my parents**, whose strength and support have been with me without fail throughout the master preparation.

Summary

The main object of this thesis is to study the application of computational geometry algorithms in computer graphics. We have chosen the set of fractal objects as a representative for computer graphics. This thesis consists of an introduction, five chapters, and an appendix. It is organized as follows:

In the first chapter: we introduce the basic concepts of computational geometry and its applications. Then we discuss some of its important problems such as *Convex hull, Point Location, Closest Pair, Voronoi Diagram, and Polygon Triangulation.* We discuss in detail the problem of convex hull in the plane. Then we present some algorithms for solving this problem in 2-dimensional space such as *Graham scan* and *QuickHull techniques.* We also present the *Gift-wrapping* and *QuickHull algorithms* for solving this problem in three or more dimensional space. Finally we study the triangulation problem for a set of points and present some algorithms for solving this problem such as Bowyer-Watson and Projection algorithms.

In the second chapter: we introduce a brief introduction to the fractal geometry. Then we discuss the basic types of fractal geometry which are iterated function systems (IFS) fractals and complex fractals. We also present some of fractal objects such as

Sierpinski triangle, Sierpinski carpet, Cantor set, Koch curve, and Fern leaf. Then we describe how we can create these fractals using IFS in 2-dimensional space.

In the third chapter: we introduce the basic definition of the Lindenmayer system (L-system) which is considered one of the most common techniques used for generating fractal objects. Then we discuss the different types of L-systems such as Deterministic Context-free L-system, Stochastic L-system, Parametric L-system, and Context-sensitive L-system. We also describe how we can use L-systems technique to model plants such as trees in 2-dimensional and 3-dimensional space.

In the fourth chapter: we introduce our main new results. In this chapter, we present a new algorithm that generates a 3D fractal plant according to the given 3D L-system and also creates the triangulation shape of the vertices generated from the last stage of the L-system rewriting process. The resulting shapes can be used as surfaces models for architectural objects. The results of this chapter are original and are published in The International Conference on Computational Geometry (ICCG), Venice, Italy, (29-31/10/2008).

In the fifth chapter: we give the conclusion about this work and we also introduce some plans for the future work.

The appendix includes three sections. The first section contains the source codes that are used to generate some of the fractal objects discussed in Chapter two using IFS. The programs of the first section are written in the Java applet language. The second section contains the source codes that are used to generate the fractal objects discussed in Chapter three using L-systems. The programs of the second section are written in the Matlab language. The third section contains an implementation of the iterative steps of the algorithm presented in Chapter four and the program written in the Matlab language.

Contents

List of Figures	viii
List of Tables	xii
Introduction	1
Chapter 1: Introduction to Computational Geometry	7
1.1 Introduction	7
1.2 Basic Definitions	8
1.3 Types of Computational Geometry Problems .	11
1.3.1 Static Problems	11
1.3.2 Geometric Query Problems	12
1.3.3 Dynamic Problems	13
1.4 Convex Hull Problem	14
1.4.1 Convex Hulls in Two-Dimensional Space	16
1.4.1.1 Graham Scan	17
1.4.1.2 QuickHull Techniques	20
1.4.2 Convex Hulls in Three-Dimensions	23
1.4.2.1 The Gift-wrapping Method	24
1.4.2.2 QuickHull Algorithm	31
1.5 Triangulation	35
1.5.1 Delaunay Triangulation	36
1.5.1.1 Voronoi Diagram and Delaunay	
Triangulation	37
1 5 1 2 Bowyer-Watson Algorithm	40

1.5.1.3 R ^{d+1} Projection Algorithm
Chapter 2: Introduction to Fractal Geometry
2.1 Introduction
2.2 Fractal Geometry and Euclidean Geometry
2.3 Fractal Object
2.3.1 Calculation of Fractal Dimension
2.4 Types of Fractal Geometry
2.4.1 Iterated Function System Fractals (IFS)
2.4.1.1 Sierpinski Triangle
2.4.1.2 Sierpinski Carpet
2.4.1.3 Koch Curve
2.4.1.4 Cantor Set
2.4.1.5 Fern Leaf
2.4.2 The Complex Fractal Objects
Chapter 3: Lindenmayer Systems (L-systems)
3.1 Introduction
3.2 Deterministic Context-free L-systems (D0L-systems)
3.3 Graphic Interpretation of L-systems Strings
3.4 Modeling in Three Dimensions
3.5 Bracketed L-systems and Models of Plants Architecture
3.6 Stochastic L-systems
3.7 Context-sensitive L-systems
3.8 Parametric L-systems

3.8.1 Parametric 0L-systems	91
3.8.2 Turtle Interpretation of Parametric Words	97
Chapter 4: Surfaces Representation using L-systems	99
4.1 Introduction	99
4.2 The Algorithm	100
4.3 Experimental Results and Discussions	103
Chapter 5: Conclusion and Future Work	114
5.1 Conclusion	114
5.2 Future Work	115
Appendix	116
Bibliography	161

List of Figures

Figure 1.1: (a) Set <i>S</i> of points and (b) Convex hull CH(<i>S</i>) of <i>S</i>
Figure 1.2: Beginning the Graham Scan
Figure 1.3: Points l , r and h subdivide the set $S^{(1)}$ and eliminate all points in the shaded triangle from further consideration
Figure 1.4: Two-dimensional illustration of the "beneath/beyond" notions
Figure 1.5: The sequence (π_1, π_2, π_3) of hyperplanes, so that π_3 contains the initial facet of the process
Figure 1.6: (a) Illustration of the half-plane determined by e and p forming the largest convex angle with the half-plane containing F (b) Illustration of the calculation of the cotangent.
Figure 1.7: Angle criterion in Delaunay Triangulation
Figure 1.8: The Voronoi diagram of a planar point set (a) and associated $C_{P(a)}$, $C_{P(b)}$ (b)
Figure 1.9: Voronoi diagram (dashed) and Delaunay triangulation (solid)
Figure 1.10: (a) New point to be added to existing triangular mesh (b) Circumscribing circles that contain the new point (c) The new triangulation obtained after inserting the new point.

Figure 1.11: The projection algorithm: Project the points in \mathbb{R}^2 to the \mathbb{R}^3 paraboloid. Calculate the convex hull, here only shown he lower part	43
Figure 1.12: The projection algorithm: Project the convex hull edges back onto R^2 and get the Delaunay triangulation	4 4
Figure 2.1: Subdividing objects with Euclidean dimensions	52
Figure 2.2: Classification of IFS and complex fractals	53
Figure 2.3: The first three stages in the construction of the Sierpinski triangle	56
Figure 2.4: Sierpinski triangle generated using the IFS description	58
Figure 2.5: The first two iterations in the construction of the Sierpinski carpet	59
Figure 2.6: The first three steps in the construction of the Koch curve.	62
Figure 2.7: The first iteration in the construction of the Koch curve using the IFS description	63
Figure 2.8: Koch snowflake curve	63
Figure 2.9: The first five iterations in the construction of the Cantor set	65
Figure 2.10: Fractal fern using IFS	66
Figure 2.11: Fern leaf using IFS	68
Figure 2.12: The fern leaf generated using the values of Example 2.1	69

Figure 2.13: The fern leaf generated using the values of Example 2.2	70
Figure 2.14: The fern leaf generated using the values of Example 2.3	70
Figure 2.15: The fern leaf generated using the values of Example 2.4	71
Figure 2.16: The fern leaf generated using the values of Example 2.5	71
Figure 2.17: The fern leaf generated using the values of Example 2.6	72
Figure 3.1: Example of a derivation in a D0L-system	77
Figure 3.2: (a) Turtle interpretation of string symbols $F, +, -$ (b) Interpretation of a string.	80
Figure 3.3: Generating a quadratic Koch island	81
Figure 3.4: Examples of Koch curves generated using L-systems	82
Figure 3.5: A sequence of Koch curves obtained by successive modification of the production successor	83
Figure 3.6: Controlling the turtle in three dimensions	85
Figure 3.7: Examples of two-dimensional plant-like structures generated by bracketed 0L-systems	87
Figure 3.8: Examples of three-dimensional plant-like structures generated by bracketed 0L-systems	88
Figure 3.9: The initial sequence of strings generated by the parametric L-system specified in equation (3.2)	97

Figure 4.1: The fractal plant generated from the L-System of Example 1 renders as lines	
Figure 4.2: The fractal plant generated from the L-System of Example 2 renders as lines	
Figure 4.3: The fractal plant generated from the L-System of Example 3 renders as lines	
Figure 4.4: The fractal plant generated from the L-System of Example 4 renders as lines	
Figure 4.5: The fractal plant generated from the L-System of Example 5 renders as lines	
Figure 4.6: The fractal plant generated from the L-System of Example 6 renders as lines	
Figure 4.7: The fractal plant generated from the L-System of Example 7 renders as lines	
Figure 4.8: The fractal plant generated from the L-System of Example 8 renders as lines	
Figure 4.9: The fractal plant generated from the L-System of Example 9 renders as lines	
Figure 4.10: The fractal plant generated from the L-System of Example 10 renders as lines	
Figure 4.11: The fractal plant generated from the L-System of Example 11 renders as lines	
Figure 4.12: The fractal plant generated from the L-System of Example 12 renders as lines	
Figure 4.13: The fractal plant generated from the L-System of Example 13 renders as lines	

List of Tables

Table 2.1: The differences between fractal geometry	
and Euclidean geometry	48
Table 3.1: Operator precedence and associativity	93
Table 4.1: Results of Examples 1-13	113

INTRODUCTION

Geometric objects such as points, lines, and polygons are the basis of a broad variety of important applications and give rise to an interesting set of problems and algorithms. The name geometry reminds us of its earliest use: for the measurement of land and materials. Today, computers are being used more and more to solve larger-scale geometric problems. Over the past two decades, a set of tools and techniques has been developed that takes advantage of the structure provided by geometry. This discipline is known as computational geometry.

Computational geometry is the branch of computer science that studies algorithms in order to solve geometric problems. It was named and largely started around 1975 by Shamos, whose Ph.D. thesis^[44] attracted considerable attention. After a decade of development, the field came into its own in 1985, when three components of any healthy discipline were realized: a textbook, a conference, and a journal. In 1985, Preparata and Shamos introduced their book "Computational Geometry: An Introduction^[32]" which is considered the first textbook solely devoted to the topic. Since 1985, several texts, collections, and monographs have appeared ([27], [43], [12], [29], [10], [28])

In modern engineering and mathematics, computational geometry has applications in, among other fields, computer

graphics, robotics, computer-aided design, and statistics. The input to a computational-geometry problem is typically a description of a set of geometric objects, such as a set of points, a set of line segments, or the vertices of a polygon in counterclockwise order. The output is often a response to a query about the objects, such as whether any of the lines intersect, or perhaps a new geometric object, such as the convex hull (smallest enclosing convex polygon) of the set of points.

One of the new branches which can be studied using the algorithms of computational geometry is the fractal geometry.

Fractal geometry is a new branch of mathematics used to model natural objects which cannot be easily represented by the Euclidean geometry. Although Cantor, Van Koch and Sierpinski discovered the first fractal objects at the beginning of the 20th century, the real development of the theory of fractals was started in the 1970s by a French mathematician of Polish origin – Benoit Mandelbrot. In 1982, Mandelbrot published his book "The Fractal Geometry of Nature [24]" that demonstrated the potential application of fractals to nature and mathematics. Through his computer experiments Mandelbrot also developed the idea of reconstructing natural scenes on computer screens using fractals. Also, the use of a computer enabled him to create, among the others, a graphical image of the most famous object of contemporary mathematics, which came to be called Mandelbrot's set, after its creator.