


شبكة المعلومات الجامعية







شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



شبكة المعلومات الجامعية

## جامعة عين شمس

التوثيق الالكترونى والميكروفيلم

## قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات



## يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% مئوية ورطوية نسبية من ٢٠-٤٠ المنافلة من ٢٠-١٥ المنافلة من ٢٠-١٥ المنافلة من ٢٠-١٥ المنافلة المن









Zagazig University / Benha Branch Faculty of veterinary Medicine, Moshtohor Department of Forensic Medicine and Toxicology

# SOME TOXICOLOGICAL STUDIES ON SOME MYCOTOXINS

6369089614 A Thesis Presented By

AHLAM FAROUK ABD EL-SAMEE

(B. V. Sc., Zagazig Univ., Benha Branch, 1998)

For

#### M.Sc. of Vet. Science Department of Forensic Medicine and Toxicology

**Under Supervision Of** 

#### Prof. Dr. Hatem Hussien Bakry

Professor of Forensic Med. & Toxicology Dean of Collage of Vet. Med., Moshtohor Zagazig Univ., Benha Branch

#### Prof. Dr. Ragab El-Shawarby

**Prof.Dr. Mohamed Abo Salem** 

Prof. and Head of Forensic Medicine and Toxicology Faculty of Vet. Med., Moshtohor Zagazig Univ., Benha Branch Prof. of Forensic Medicine and Toxicology Faculty of Vet. Med., Moshtohor Zagazig Univ., Benha Branch

#### Assist. Prof. Dr. Elham El-Shewy

Assist. Prof. of Forensic Medicine and Toxicology Faculty of Vet. Med., Moshtohor Zagazig Univ., Benha Branch

(2004)



My sincere thanks are due to *Dr. Nabela Abd El-Aleem*, assistant Prof. of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Moshtohor, Zagazig University, Benha Branch for her great guidance in preparing this manuscript.

Much gratitude is owed to *Or. Ahmed Abd El-Hafez*, assistant Prof. of Pathology, Faculty of Veterinary Medicine, Moshtohor, Zagazig University, Benha Branch for his friendly help in facilitating the means for the histopathological study.

My extreme thank fullness is also to *Dr. Saad Sharawy* Assistant Prof. of Virology, Faculty of Veterinary Medicine, Moshtohor, Zagazig University, Benha Branch for his help in virological study.

I am profoundly grateful to all members of *Central Laboratory* in Faculty of Veterinary Medicine, Moshtohor, Zagazig University, Benha Branch for their help in all possible facilities.

I would like to endorse my utmost and sincere thanks to faithful soul of my father, my lovely mother, my husband and my sisters and my daughter for their continuous encouragement and great care throughout this study and allover my life.

Francisco Contractor Contractor

#### **CONTENTS**

| Title                                         | Page |
|-----------------------------------------------|------|
| INTRODUCTION                                  | 1 .  |
| AIM OF WORK                                   | 2    |
| REVIEW OF LITERATURE                          | 3    |
| Structure of aflatoxin                        | 3 '  |
| Fat favouring production of aflatoxin         | 5    |
| Metabolism and molecular basis of aflatoxins  | 6 .  |
| Mechanism of action of aflatoxins             | 10   |
| Occurrence of aflatoxins in cereal grains     | 11   |
| Occurrence of aflatoxins in poultry feed      | 16   |
| Occurrence of aflatoxins in large animal feed | 20   |
| Aflatoxins and animal health                  | 24   |
| - Clinical signs                              | 25   |
| - Immunity                                    | 27   |
| - Biochemistry and heamatology                | 31   |
| - Gross lesion                                | 39   |
| - Histopathology                              | 42   |
| Detoxification                                | 46   |
| - Hydrated sodium, calcium, aluminum silicate | 46   |
| - Charcoal                                    | 49   |
| - Clinoptiolite                               | 51   |
| - Sodium pentonite                            | 52   |
| - Yeast                                       | 53   |
| - Soil                                        | 55   |
| - Ammoniation                                 | 56   |
| - Feed additives                              | 56   |
| Residues                                      | 61   |
| - In poultry tissue                           | 61   |

### LIST OF FIGURES

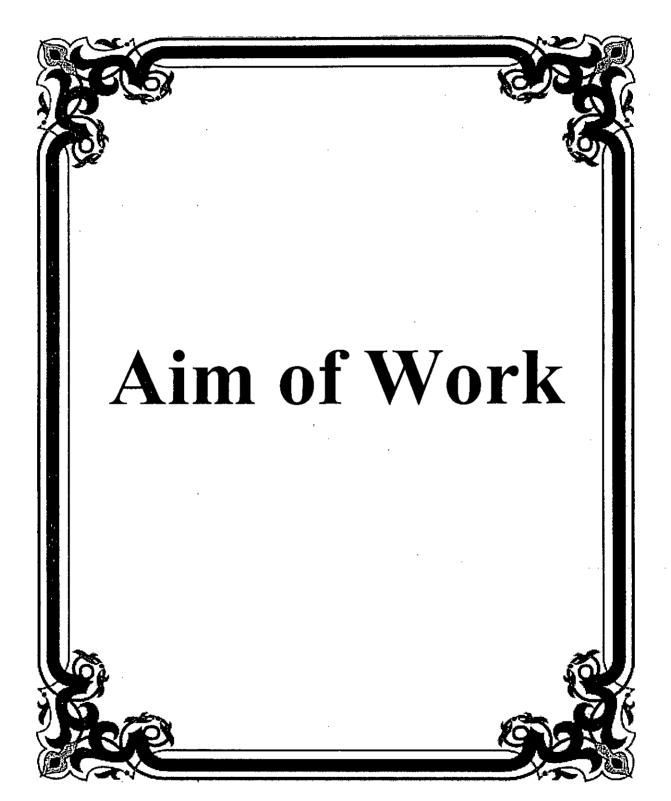
| Figure | Title                                                    | Page    |
|--------|----------------------------------------------------------|---------|
| (1)    | Structures of aflatoxins and closely related metabolites | 4       |
| (2)    | HPLC resolution of aflatoxin B1 on reverse phase C18     |         |
|        | column (10 $\mu$ m, 4 $\mu$ m, id $\times$ 30 cm)        | 89      |
| (3)    | HPLC resolution of aflatoxin B2 on reverse phase C18     |         |
|        | column (10 $\mu$ m × 4 $\mu$ m, id × 30 cm)              | 90      |
| (4)    | HPLC resolution of aflatoxin G1 on reverse phase C18     |         |
|        | column (10 $\mu$ m × 4 $\mu$ m, id × 30 cm)              | 91      |
| (5)    | HPLC resolution of aflatoxin G2 on reverse phase C18     |         |
|        | column (10 $\mu$ m × 4 $\mu$ m, id × 30 cm).             | 92      |
| (6)    | Percentage of aflatoxin B1, B2, G1 and G2 in poultry,    |         |
|        | large animal feed, yellow corn and soybean.              | 94      |
| (7)    | Mean of aflatoxin B1, B2, G1 and G2 (ppb) in poultry,    |         |
| '      | large animal feed, yellow corn and soybean.              | 94      |
| (8)    | Effect of aflatoxin B1 on mean body weight (g) of        | з.      |
| 4.     | chicks along the experiment.                             | 96      |
| ·(9)   | Effect of aflatoxin B1 on feed intake (kg) of chicks     | · · · · |
|        | along the experiment.                                    | 96      |
| (10)   | Effect of AFB1 on relative organ weight of broiler       |         |
| ,      | chicks at the end of the experiment (7 weeks).           | 97      |
| (11)   | Effect of aflatoxin B1 on organ indexes at the end of    |         |
|        | the experiment (7 weeks) in broiler checks.              | 98      |
| (12)   | a) Effect of aflatoxin B1 on some haematological         | ٠       |
|        | parameters (RBCs & WBCs) of boiler chicks at             |         |
|        | the end of the experiment (7 weeks).                     | 100     |
| ·      | b) Effect of aflatoxin B1 on some haematological         |         |
|        | parameters (Hb & PCV%) of boiler chicks at the           |         |
|        | end of the experiment (7 weeks).                         | 100     |
| (13)   | Effect of aflatoxin B1 on different white blood cells    |         |
|        | count of boiler chicks at the end of the experiment (7   |         |
|        | weeks).                                                  | 101     |

| Figure | Title                                                                                                                                                                                                                                                                    | Page |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (14)   | <ul><li>a) Effect of aflatoxin B1 on serum (total protein, albumin and globulin) of broiler chicks at the end of the experiment (7 weeks).</li><li>b) Effect of aflatoxin B1 on serum (A/G ratio) of</li></ul>                                                           | 103  |
|        | broiler chicks at the end of the experiment (7 weeks).                                                                                                                                                                                                                   | 103  |
| (15)   | <ul><li>a) Effect of aflatoxin B1 on some liver function parameters (ALT, AST &amp; ALP) of broiler chicks at the end of the experiment (7 weeks).</li><li>b) Effect of aflatoxin B1 on some liver function parameters (total and direct bilirubin) of broiler</li></ul> | 105  |
|        | chicks at the end of the experiment (7 weeks).                                                                                                                                                                                                                           | 105  |
| (16)   | <ul> <li>a) Effect of aflatoxin B1 on some liver function parameters (urea) of broiler chicks at the end of the experiment (7 weeks).</li> <li>b) Effect of aflatoxin B1 on some liver function</li> </ul>                                                               | 107  |
|        | parameters (creatinine) of broiler chicks at the end of the experiment (7 weeks).                                                                                                                                                                                        | 107  |
| (17)   | Effect of aflatoxin B1 on haemaglutination inhibition titer in chicks along the experiment (7 weeks).                                                                                                                                                                    | 108  |
| (18)   | Effect of aflatoxin B1 on immune respose of broiler chicks against IBD and IB vaccine.                                                                                                                                                                                   | 109  |
| (19)   | Aflatoxin residues in chicks muscles at the end of the experiment (7 weeks).                                                                                                                                                                                             | 110  |
| (20)   | Liver chickens experimentally feed on 10 ppb AFB1 showing large reddis areas and pale ness of hepatic surface                                                                                                                                                            | 115  |
| (21)   | Thymus of chickens experimentally feed on 10 ppb AFB1 showing enlargement and congestion                                                                                                                                                                                 | 115  |
| (22)   | Liver of chickens experimentally feed on 1- ppb AFB1 showing large, pale liver (1) compared with other groups.                                                                                                                                                           | 116  |

| Figure | Title                                                       | Page |
|--------|-------------------------------------------------------------|------|
| (23)   | Immune organs (bursa of Fabricius and spleen) of            |      |
|        | chickens experimentally feed on 10 ppb AFB1 showing         |      |
|        | enlargement compared with control group (3).                | 116  |
| (24)   | Liver of broiler chicks experimentally feed on 10 ppb       |      |
|        | AFB1 showing diffuse vacculation of hepatocytes. H &        |      |
|        | E stain x 100.                                              | 117  |
| (25)   | Liver of broiler chicks experimentally feed on 10 ppb       |      |
|        | AFB1 showing hyperplasia of bile ductal epithelium. H       |      |
|        | & E stain x 100.                                            | 117  |
| (26)   | Liver of broiler chicks experimentally feed on 10 ppb       |      |
|        | AFB1 showing congestion of portal blood vessels with        |      |
|        | lymphocytic cellular infiltration of portal area. H & E     |      |
|        | stain x 100                                                 | 118  |
| (27)   | Liver of broiler chicks experimentally feed on 10 ppb       |      |
|        | AFB1 showing focal area of hepatic necrosis. H & E          |      |
|        | stain x 100                                                 | 118  |
| (28)   | Liver of broiler chicks experimentally feed on 10 ppb       |      |
|        | AFB1 showing focal lymphocytic cellular aggregation         | :    |
|        | forming nodules. H & E stain x 100                          | 119  |
| (29)   | Kidney of broiler chicks experimentally feed on 10 ppb      |      |
|        | AFB1 showing shrinkage of some glomeruli. H & E             |      |
|        | stain x 100                                                 | 119  |
| (30)   | Kidney of broiler chicks experimentally feed on             | !    |
|        | cellular infiltration of interstitial tissue. H & E stain x |      |
|        | 100                                                         | 120  |
| (31)   | Bursa of broiler chicks experimentally feed on 10 ppb       |      |
|        | AFB1 showing depletion of the lymphoid follicles. H         |      |
|        | & E stain x 100                                             | 120  |
| (32)   | Brain of broiler chicks experimentally feed on 10 ppb       |      |
| -      | AFB1 showing focal area of encephalomalacia. H & E          |      |
| -      | stain x 100                                                 | 121  |

| Figure | Title                                                  | Page |
|--------|--------------------------------------------------------|------|
| (33)   | Brain of broiler chicks experimentally feed on 10 ppb  |      |
|        | AFB1 showing neural degeneration and neurophagia. H    |      |
|        | & E stain x 100                                        | 121  |
| (34)   | Heart of broiler chicks experimentally feed on 10 ppb  |      |
|        | AFB1 showing congestion of intermascular blood         |      |
| :      | vessels and perivascular edema. H & E stain x 100      | 122  |
| (35)   | Spleen of broiler chicks experimentally feed on 10 ppb |      |
|        | AFB1 showing focal aggregation of mononuclear          |      |
|        | inflammatory cells forming nodules. H & E stain x 100  | 122  |
| (36)   | Liver of broiler chicks experimentally feed on 10 ppb  |      |
|        | AFB1 and antitoxin 1kg/ton showing vacculation of      |      |
|        | some hepatocytes. H & E stain x 100                    | 123  |
| (37)   | Liver of broiler chicks experimentally feed on 10 ppb  |      |
|        | AFB1 and antitoxin 1kg/ton showing focal aggregation   |      |
|        | of mononuclear inflammatory cells mostly lymphocyte.   |      |
|        | H & E stain x 100                                      | 123  |
| (38)   | Liver of broiler chicks experimentally feed on 10 ppb  |      |
|        | AFB1 and antitoxin 1kg/ton showing preductal           |      |
| :      | lymphocytic cellular aggregation. H & E stain x 100    | 124  |
| (39)   | Kidney of broiler chicks experimentally feed on 10 ppb |      |
|        | AFB1 and antitoxin 1kg/ton showing degeneration of     |      |
|        | renal tubules with focal aggregation of inflammatory.  |      |
|        | H & E stain x 100                                      | 124  |
| (40)   | Bursa of Fabricius of broiler chicks experimentally    |      |
|        | feed on 10 ppb AFB1 and antitoxin 1kg/ton showing      |      |
|        | focal desquamation of some lining epithelium and       |      |
|        | slight lymphoid depletion. H & E stain x 100           | 125  |

#### INTRODUCTION


Aflatoxicosis represents one of the most serious disease of poultry, livestock, companion animals and man (Edds, 1973).

The removal of performed aflatoxin from contaminated feed has been a major problem. These toxins are not heat-labile and can survive pelleting and other processing operations. They are non antigenic so vaccination is impossible Rodricks and Stoloff, 1976).

Mycotoxins are secondary metabolities produced by many important phytopathogenic and food spoilage fungi including Aspergillus, fusarium and penicillium species (Sweeney and Dobson, 1999).

Mycotoxins are a heterogeneous group of secondary fungal metabolities. Their formation in food and feed stuffs is influenced by may factors, including humidity, temperature, pH, oxygen concentration, type of substrate or presence of competitive microflora. Besides the negative effects of mycotoxins on health and performance of farm animals, it is of importance to consider to what extent mycotoxins carried over into edible tissues like meat, milk and eggs when fed to farm animals (Blank, 2002).

Mycotoxins contaminate various feed and food commodities, due to the global occurrence of toxigenic mould. They adverse health effects in human and animals. The nature of these toxic effects varies depending on the chemical structure of the toxin. The degree of these adverse effects is not only determined by toxin concentration present in food and feeds, but also by the time of exposure. Whilst in animals, next to acute intoxication, losses in productivity, reduced weight gain and immuno suppression are considered as most important feature of mycotoxicosis (Fink, 1999).



#### AIM OF WORK

As aflatoxins were not only potent carcinogenic for human and animal but also resulting in an economical loss through cost of treatment and industrial losses and in detoxification. Moreover, impossibility for vaccination and treatment. Using antitoxin may reduce aflatoxin residues in animal tissue and improve animal performance. So we aimed to collect random samples of animal feed (poultry and large animal) and cereal grains (yellow corn and soybean) from different localities in Kalubia and Sharkia governorates and determinate aflatoxins content by HPLC a highly sensitive quantative method. In addition, experimental study was extended to explore the toxic effects of aflatoxins on broiler chicks beside determinate residues of aflatoxin in broiler chicks muscle as it considered a cheap source of protein for Egyptian consumer.