

سورة البقرة الآية: ٣٢

Pattern of Lower Respiratory Tract Infection Through Patients in El- Shorta Hospital Nasr city

Thesis

Submitted for Partial Fulfillment of the Master Degree

In Chest Disease and Tuberculosis

BY

Bassem Mohamed EL Kholy *M.B.B.CH*

Supervised by Prof. Laila Ashour Helala

Professor of Chest Diseases.

Faculty of Medicine- Ain Shams University.

Dr. Ashraf Adel Gomaa

Lecturer of Chest Diseases.

Faculty of Medicine- Ain Shams University

Faculty of Medicine Ain Shams University 2014

First, I wish to express my deep thanks, sincere gratitude to **Allah**, who always helps, supports, care for me and grunted me the ability to accomplish this assay.

I would like to express my deepest gratitude, thanks and gratefulness to **Prof. Laila Ashour Helala**, Professor of Chest Diseases, Faculty of Medicine- Ain Shams University for his continuous support, and great help throughout of the accomplishment of this work.

I am very grateful to **Dr. Ashraf Adel Gomaa**, Lecturer of Chest Diseases, Faculty of Medicine, Ain Shams University for his kind supervision, support and great help through out of course of my assay.

Special thanks to my **family** for their continuous support and encouragement.

Bassem Mohamed &L Kholy

Contents

S	Subjects	Page
•	List of abbreviations	I
•	List of figures	IV
•	Introduction	1
•	Aim of the work	4
•	Review of literature	5
•	Subjects & methods	69
•	Results	80
•	Discussion	147
•	Summary & Conclusion	162
•	Recommendations	170
•	References	172
•	Arabic summary	

List of Abbreviations

AECOPD : Acute exacerbation of chronic obstructive

pulmonary disease

AMT : Abbreviated Mental Test

ARDS : Acute respiratory distress syndrome

ATS : American thoracic societyBAL : Bronchoalveolar lavageBTS : British thoracic society

CAP : Community acquired pneumonia

CDC : Centers for Disease Control and PreventionCOPD : Chronic obstructive pulmonary diseases

CMI : cell-mediated immunityC.pneumoniae : Chlamydia pneumoniae

HAP : Hospital acquired pneumonia

H.Influenza : Hemophilus influenza

ICU : Intensive care unit IgA : Immunoglobulin A

IDP : Incompletely diagnosed PneumoniaIDSA : Infectious Diseases Society of America

IPD : Inpatient departmentK.pneumoniae : klebsiella pneumonia

LA : Lung Abcess

LRTI : Lower respiratory tract infections

MDR : Multi drug resistant

M.pneumoniae: Mycoplasma pneumonia

MRSA : Methicillin resistant staphylococcus aureus

NIV : Non invasive ventilationNPB : Non Pneumonic BronchitisOPD : Outpatient Department

P. aeruginosa : Pseudomonas aeroginosa

🕏 List of Abbreviations 🗷

PCR : Polymerase chain reaction
PMN : Polymorphoneutrophils
PSI : Pneumonia severity index

RR : Respiratory rate

S.aureus : Staphylococcus aureus

SIRS : Shock systemic inflammatory response

syndrome

S pneumonia : Streptococcus pneumonia

TMP-SMX : trimethoprim-sulfamethoxazole

TTA : Transtracheal aspiration

VAP : Ventilator associated pneumonia

WHO : World health organization

List of Tables

Tab. No.	Title	Page
Table (1)	Etiological Agents of Pneumonia	19
Table (2)	Differential Diagnosis of community-	31
	Acquired Pneumonia	
Table (3)	Recommendations for the microbiological	
	investigation of community acquired pneumonia (CAP)	
Table (4)	Antimicrobiological treatment of	37
	community acquired pneumonia (CAP)	
Table (5)	Guidelines for the management of CAP	39
Table (6)	NNIS Clinical Criteria for the diagnosis of	40
	Pneumonia	
Table (7)	Initial empiric antibiotic therapy for HAP	56
	or VAP in patients with no known risk	
	factors for multidrug-resistant pathogens,	
	early onset, and any disease severity	
Table (8)	Diagnostic Testing and Response	68
Table (9)	Distribution of patients in different groups	81
Table (10)	Patients characteristics	82
Table (11)	Blood picture	83
Table (12)	Patient's presentation	84
Table (13)	Prevalence of Chronic Diseases among	84
	studied patients	
Table (14)	Types of samples	85
Table (15)	Gram Stain of sputum and BAL in all	86
	patients	
Table (16)	Sputum and BAL cultures in all patients	87

Tab. No.	Title	Page
Table (17)	Prevalence of various organisms in	88
	sputum and BAL	
Table (18)	Antimicrobial sensitivity of organisms	89
	grown from (sputum/BAL) cultures	
Table (19)	Gram Stain of sputum and BAL in	94
	different studied groups	
Table (20)	Organisms found in Sputum and BAL	95
	cultures in different Groups	
Table (21)	Antimicrobial sensitivity of organisms	96
	grown from examined cultures through	
	different groups	
Table (22)	Sensitivity of various organisms to	105
	Amikacin Sulfate in different groups	
Table (23)	Sensitivity of various org to	106
	Amoxacillin+Clavulonic acid in different	
	groups	
Table (24)	Sensitivity of various organisms to	107
	Ampicillin in different groups	
Table (25)	Sensitivity of various organisms to	108
	Azithromycin in different groups	
Table (26)	Sensitivity of various organisms to	109
	Aztreonam in different groups	
Table (27)	Sensitivity of various organisms to	110
	Cefaclor in different groups	
Table (28)	Sensitivity of various organisms to	111
	Cefoperazon in different groups	
Table (29)	Sensitivity of various organisms to	112
	Cefotaxime in different groups	
Table (30)	Sensitivity of various organisms to	113
	Ceftriaxone in different groups	

Tab. No.	Title	Page
Table (31)	Sensitivity of various organisms to	114
	Ciprofloxacin in different groups	
Table (32)	Sensitivity of various organisms to	115
	Erythromycin in different groups	
Table (33)	Sensitivity of various organisms to	116
	Doxycycline in different groups	
Table (34)	Sensitivity of various organisms to	117
	Ciftazedin in different groups	
Table (35)	Sensitivity of various organisms to	118
	Gentamicin in different groups	
Table (36)	Sensitivity of various organisms to	119
	Cefepime in different groups	
Table (37)	Sensitivity of various organisms to	120
	Meropenem in different groups	
Table (38)	Sensitivity of various organisms to	121
	Norfloxacin in different groups	
Table (39)	Sensitivity of various organisms to	122
	Nitrofurantoin in different groups	
Table (40)	Sensitivity of various organisms to	123
	Neomycin in different groups	
Table (41)	Sensitivity of various organisms to	124
	Tazobactam+pipericillin in different	
	groups	
Table (42)	Sensitivity of various organisms to	125
	Tobramycin by in different groups	
Table (43)	Sensitivity of various organisms to	126
	Ofloxacin in different groups	
Table (44)	Sensitivity of various organisms to	127
	Imeginem in different groups	

Tab. No.	Title	Page
Table (45)	Sensitivity of various organisms to	128
	Levofloxacin in different groups	İ
Table (46)	Sensitivity of various organisms to	129
	Vancomycin in different groups	1
Table (47)	Sensitivity of various organisms to	130
	Ampicillin+ Sulbactam in different groups	<u> </u>
Table (48)	Sensitivity of various organisms to	131
	cefoperazone in different groups	1
Table (49)	Sensitivity of various organisms to	132
	Cefuroxim in different groups	1
Table (50)	Organisms found in blood culture in	133
	different groups	1
Table (51)	Antimicrobial sensitivity of organisms in	134
	blood culture	
Table (52)	Types of LRTI	139
Table (53)	Types of LRTI in different groups	140
Table (54)	Prevalence of various organisms in	141
	patients with COPD	
Table (55)	Prevalence of various organisms in	141
	patients with bronchial asthma	
Table (56)	Prevalence of various organisms in	142
	diabetic patients	
Table (57)	Prevalence of various organisms in	143
	patients with hepatic disease	
Table (58)	Prevalence of various organisms in	143
	patients with renal disease	
Table (59)	Prevalence of various organisms in	143
	patients with cerebrovascular disease	

Tab. No.	Title	Page
Table (60)	Gram Stain of sputum and BAL in	144
	different types of LRTI	
Table (61)	Sputum cultures and BAL organisms in	145
	different types of LRTI	

List of Figures

Figure No.	Title	Page No.
Figure (1)	Infections of the respiratory tract	6
Figure (2)	Summary of the management strategies	28
	for a patient with suspected hospital-	
	acquired pneumonia	
Figure (3)	Algorithm for initiating empiric	36
	antibiotic therapy for hospital-acquired	
	pneumonia	
Figure (4)	Source of VAP pathogens	53
Figure (5)	Summary of the management strategies	55
	for a patient with suspected hospital-	
	acquired pneumonia (HAP), ventilator-	
	associated pneumonia (VAP), or	
	healthcare-associated pneumonia	
	(HCAP)	
Figure (6)	Algorithm for initiating empiric	56
	antibiotic therapy for hospital-acquired	
	pneumonia (HAP), ventilator-associated	
	pneumonia (VAP), and healthcare-	
	associated pneumonia (HCAP)	
Figure (7)	Distribution of patients in different	81
	groups	
Figure (8)	Patients characteristics	82
Figure (9)	Findings in blood picture	83
Figure (10)	Types of samples	85
Figure (11)	Gram Stain of sputum and BAL in all	86
	patients	

🕏 List of Figures 🗷

Figure No.	Title	Page No.
Figure (12)	Organisms grown from sputum/BAL	87
	cultures	
Figure (13)	Antimicrobial Sensitivity of organisms	92
	in examined culture	
Figure (14)	Antmicrobial Sensitivity of organisms in	93
	examined culture.	
Figure (15)	Gram stain of sputum and BAL in	94
	different groups	
Figure (16)	Organisms found in examined culture	95
	through different groups	
Figure (17)	Antimicrobial sensitivity of organisms	103
	in examined cultures through different	
	groups	
Figure (18)	Antimicrobial sensitivity of organisms	104
	in examined cultures through different	
	groups	
Figure (19)	Organisms found in blood culture in	133
	different groups	
Figure (20)	Antimicrobial Sensitivity of organisms	137
	in blood culture.	
Figure (21)	Antimicrobial Sensitivity of organisms	138
	in blood culture	
Figure (22)	Types of LRTI	139
Figure (23)	Types of LRTI in different groups	140
Figure (24)	Gram Stain of sputum and BAL in	144
	different types of LRTI	
Figure (25)	Sputum cultures and BAL organisms in	146
	different types of LRTI	

Introduction

Lower Respiratory Tract Infection

Acute lower respiratory tract infections are a persistent and pervasive public health problem. They cause a greater burden of disease worldwide than human immunodeficiency virus infection, malaria, cancer, or heart attacks. In the United States, they cause more disease and death than any other infection, and there has been little change in mortality due to respiratory tract infection for more than five decades (*Mizgerd*, 2006; *Armstrong et al*, 1999).

The outcome of an acute lower respiratory tract infection depends on the virulence of the organism and the inflammatory response in the lung. When small numbers of low-virulence microbes are deposited in the lungs, an effective defense can be mounted by resident innate immune defenses, such as the mucociliary escalator, antimicrobial proteins in airway surface liquid, and alveolar macrophages (*Mizgerd*, 2008).

In contrast, numerous or more virulent microbes elicit an inflammatory response. Although this response serves to reinforce innate immunity and is essential to rid the lungs of microbes, it contributes directly to lung injury and abnormal pulmonary function (*Mizgerd*, 2008).

Acute inflammation features the accumulation of neutrophils and a plasma exudate outside of blood vessels. In the pulmonary capillaries of uninfected lungs, these blood contents are normally separated from the alveolar air by less than 1 μ m, the thinnest interface between the blood and the environment. The trapping of neutrophils in these capillaries,

which is the result of geometric and biophysical constraints, increases their quantity per volume of blood by approximately 50 times as compared with other blood vessels, forming a marginated pool of neutrophils that is ready to respond when needed (*Doerschuk*, 2001).

During pulmonary infection, neutrophils migrate out of the pulmonary capillaries and into the air spaces. *Elie Metchnikoff*, the discoverer of phagocytosis, considered neutrophils (or microphages, as he called them) to be "the defensive cells *par excellence* against microorganisms" (*Burns et al.*, 2003; *Metchnikoff 1905*).

After phagocytosis, neutrophils kill ingested microbes with reactive oxygen species (e.g., hypochlorite), antimicrobial proteins (e.g., bactericidal permeability-inducing protein and lactoferrin), and degradative enzymes (e.g., elastase) an additional microbicidal pathway has also been identified — the neutrophil extracellular trap (NET). Neutrophils extrude NETs composed of a chromatin meshwork containing antimicrobial proteins, and these NETs ensnare and kill extracellular bacteria (*Nathan 2006; Brinkmann et al., 2004*).

Lower respiratory tract infections (LRTI) have long been recognized as the major cause of morbidity and they rank among the most frequent causes of death among Patients especially the elderly (\geq 65 years) with greater incidence ranging from 25-40 cases per 1000 inhabitants per year. Accordingly, epidemiological studies on the occurrence of such illnesses in the community have been abundant (*Monto and Cavallaro*, 1999).