

Strengthening of Reinforced Concrete L-Beams Subjected to Pure Torsion

A Thesis e Faculty of

Submitted to the Faculty of Engineering Ain Shames University for the Fulfillment of the Requirement of M.Sc. Degree In Civil Engineering (Structural)

Prepared by AHMED AWAD MOSAD TAHA

B.Sc. in Civil Engineering, June 2008 Higher Institute of Engineering – El Shorouk Academy

Supervisors

Prof. Dr. AMR ALY ABD EL RAHMAN

Professor of Concrete Structures Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. AHMED FAROUK DEIFALLA

Lecturer, Civil Engineering Department British University in Egypt, Cairo, EGYPT

2014

Strengthening of Reinforced Concrete L-Beams Subjected to Pure Torsion

A Thesis For

The M.Sc. Degree in Civil Engineering (STRUCTURAL ENGINEERING)

By

AHMED AWAD MOSAD TAHA

B.Sc. in Civil Engineering, June 2008 Higher Institute of Engineering – El Shorouk Academy

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Osman Mohamed Osman Ramdadan	
Prof. Dr. Abdel Wahab Ahmed El-ghandour	
Prof. Dr. Amr Ali Abd El-rahman	

Date: 16/4/2014

STATEMENT

This thesis is submitted to AIN SHAMS UNIVERSITY in partial fulfillment of the

requirements for the degree of Master of Science in Civil Engineering (Structural).

The work included in this thesis was carried out by author in the Department of Structural

Engineering, faculty of Engineering, Ain Shams University.

No part of this thesis has been submitted for a degree of qualification at any other

university or institute.

The candidate confirms that the work submitted is his own and that appropriate credit has

been given where reference has been made to the work of others.

Date

: 16/4/2014

Name

: Ahmed Awad Mosad

Signature:

iii

AUTHOR

Name : Ahmed Awad Mosad

Date of birth : 19 February 1987

Place of birth : kingdom of Saudi Arabia

Academic Degree : B.Sc. in Structural Engineering

University : Higher Institute of Engineering – El Shorouk Academy

Date : July 2008

Grade : Excellent

ACKNOWLEDGMENT

I would like to thank Allah for blessings granted to me all the way until I finished this research, and all throughout my life.

I want to express this profound gratitude and deep appreciation to the supervisors and thank them for their great efforts in solving all problems encountered during the research and for their direct supervision and valuable advice and encouragement during the course period.

Prof. Dr. / AMR ALY ABD EL RAHMAN

Dr. / AHMED FAROUK DEIFALLA

I would like to thank my friends and officials of consulting engineering laboratories for their help and advice during my research.

In addition, I would like to thank my institute (El Shorouk Academy) for offering me one day off every week to work on my thesis research work.

And finally, to my father, my mother, my sister and my brother whose love and encouragement I could not do without.

V

AIN SHAMS UNIVERSITY FUVULTY OF ENGINEERING STRUCTURAL ENGINEERING DEPARTMENT

Abstract of the M.sc. Thesis submitted by

Ahmed Awad Mosad

Title of Thesis:

Strengthening of Reinforced Concrete L-Beams Subjected to Pure Torsion

Supervisors:

Prof. Dr. Amr Aly Abd Elrahman
Dr. Ahmed Farouk Deifalla

Abstract:

Torsion failure is an undesirable brittle form of failure. In the design of many structures and under service conditions, torsion plays a significant role. Significant torsion occurs in structural members of buildings such as girders supporting eccentric columns or asymmetric slabs as well as spandrel beams and edge beams supporting cantilever floor slabs.

During the last few decades, several advantages of strengthening concrete elements using Fiber Reinforced Polymer (FRP) have emerged. The use of this material is since been accepted by designers due to its superior properties, which include high strength to weight ratio, non-corrosiveness, and ease of installation.

The objective of this research is to investigate the behavior of RC L-shaped specimens strengthened by using carbon fiber reinforced polymers and subjected to pure torsion. The effect of different parameters such as fiber orientation and using mechanical anchors were observed in addition to FRP.

vi

The experimental program included five L-shaped specimens tested under pure torsion. All specimens had the same stirrups, longitudinal steel bars, and concrete dimensions.

- All specimens were flanged with L-shaped cross-section and dimensions bw/hw/bf/tf = 150/350/300/150 mm
- The first specimen was unstrengthened (control specimen), the other specimens strengthened using CFRP strips with different orientation
- Only two specimens were strengthened using CFRP strips with anchoring system

The experimental results were compared with the theoretical calculations from the Egyptian, ACI, and CSA code provisions.

Table of Contents

Table of Contents	viii
List of Figures	xii
List of Tables	XV
List of Symbols	xviii
Chapter 1: Introduction	
1.1 General	1
1.2 Motive	2
1.3 Objectives	2
1.4 Scope	2
Chapter 2: Literature Review	
2.1 Fiber Reinforced Polymers (FRP)	4
2.2 Advantages and disadvantages of CFRP laminate	4
2.3 Torsion Behavior of RC Beams	5
2.3.1 Experimental Research	6
2.3.2 Analytical Research	6
2.4 Torsion Strengthening of RC Beams	10
2.4.1 Experimental Research	10
2.4.2 Analytical Research	29
Chapter 3: Material Testing	
3.1 Introduction	31
3.2 Tests of Used Materials.	31
3.2.1 Coarse Aggregates	31
3.2.2 Fine Aggregates	
3.2.3 Combined Aggregates	
3.2.4 Cement	37

3.2.5 Reinforcing Steel.	38
3.2.6 CFRP and the Adhesive Material	38
3.3 Test Procedure for Concrete	41
Chapter 4: Experimental Program	
4.1 Introduction	45
4.2 Study Parameters	45
4.3 Specimens Description.	45
4.3.1 Specimens Cross-Section and Reinforcement Details	46
4.3.2 Specimens Strengthening Details	47
4.3.2.1 Specimen (CLB1) Strengthening Details	47
4.3.2.2 Specimen (CLB2) Strengthening Details	48
4.3.2.3 Specimen (CLB3) Strengthening Details	49
4.3.2.4 Specimen (CLB4) Strengthening Details	51
4.4 Casting and Curing	54
4.5 Application of strengthening system	58
4.6 Test Setup	61
4.7 Measuring Devices.	64
4.7.1 Load Cell	64
4.7.2 Electrical Strain Gauges	64
4.7.3 Dial Gauges	67
4.7.4 DEMEC Strain Gauges	68
Chapter 5: Experimental Results	
5.1 Introduction	69
5.2 Results of Control Specimen (LB)	
5.3 Results of Specimen (CLB1)	
5.4 Results of Specimen (CLB2).	
5.5 Results of Specimen (CLB3).	
5.6 Results of Specimen (CLB4).	94

5.7 Discussion of Results.	100
5.7.1 Control Specimen (LB)	100
5.7.2 Full Spiral Wrapping Specimen (CLB1)	101
5.7.3 U-Jacket Spiral Wrapping Specimen (CLB2)	101
5.7.4 U-Jacket Spiral Wrapping Specimen with Anchors (CLB3)	102
5.7.5 U-Jacket Vertical Wrapping Specimen with Anchors (CLB4)	103
Chapter 6: Analysis of Experimental Results	
6.1 Introduction	104
6.2 Comparisons of Experimental Results for all Specimens	104
6.2.1 Torsion Behavior.	104
6.2.2 Relation between Torsion Moment and Angle of Twist	107
6.2.3 Relation between Torsion Moment and Displacement	108
6.2.4 Relation between Torsion Moment and Strain at Stirrups	110
6.2.5 Relation between Torsion Moment and Strain at Longitudinal	
Steel	112
6.2.6 Relation between Torsion Moment and Strain at Concrete	115
6.3 Failure Mode	117
6.4 FRP Load Contribution.	125
6.4.1 Load Behavior	126
6.4.2 Effect of Strengthening on First Crack and Failure Loads	126
6.5 Effect of Strengthening Using Anchors	130
6.5.1 Effect of Using Anchors on FRP Contribution to the Torsion	
Resistance	131
6.5.2 Effect of using Anchors on Twist Resistance	133
6.5.3 Effect of Using Anchors on Strain of Stirrups	135
6.5.4 Effect of Using Anchors on Strain of Longitudinal Steel	136
6.5.5 Effect of Using Anchors on Strain of Concrete	138

Chapter 7: Code Predictions	
7.1 Introduction14	2
7.2 Effective Strain in FRP Laminates	13
7.2.1 Completely Wrapped Members	3
7.2.2 Bonded U-Wraps or Bonded Face Plies of FRP14	-3
7.3 Effective Strain in CFRP Laminates for Strengthened Beams	5
7.3.1 Effective Strain in CFRP Laminates for (CLB1) Specimen14	5
7.3.2 Effective Strain in CFRP Laminates for (CLB2); (CLB3); and (CLB4	1)
Specimens12	16
7.4 Design according to ECP-203-07.	17
7.5 Design according to ACI 318-05.	8
7.6 Design according to CSA A23.3-04.	19
7.7 Conclusion	50
Chapter 8: Summary and Conclusions	
8.1 Summary	2
8.2 Conclusions	i3
8.3 Suggestions for Future Work	5

References

List of Figures

	Page
Chapter 2	
Figure (2-1) Member under Combined Loading.	5
Figure (2-2) Actual and Model Cross Section of a Hollow Member	8
Figure (2-3) Truss model for RC under shear and normal stress	8
Figure (2-4) Spandrel-Beam Specimen Detail.	15
Figure (2-5) Crack Pattern of the Fully and Completely Wrapped Rectangula	r Beam
with Continuous FRP Sheets.	17
Figure (2-6) Schematic Configuration of Strengthened Beams	21
Figure (2-7) all Tested Beam Techniques.	25
Figure (2-8) Dimensions of test beam and reinforcement details	26
Figure (2-9) Different Strengthening Schemes that can be used for Torsion.	30
Chapter 3	
Figure (3-1) Grading Curve for Coarse Aggregate	33
Figure (3-2) Grading Curve for Fine Aggregate	35
Figure (3-3): Grading Curve for Combined Aggregate	36
Figure (3-4) Casting the Standard Cylinders	42
Figure (3-5) Casting the Standard Cubes	42
Figure (3-6) Standard Cube Failure Shape	43
Figure (3-7) Standard Cylinder Failure Shape	43
Chapter 4	
Figure (4-1): Dimensions and Reinforcement Details of Flanged L- Shaped S	Specimens46
Figure (4-2): Strengthened Specimen (CLB1)	47
Figure (4-3): strengthening details for Specimen (CLB1)	48
Figure (4-4): Strengthened Specimen (CLB2)	48
Figure (4-5): Strengthening Details for Specimen (CLB2)	49
Figure (4-6): Strengthened Specimen (CLB3)	50
Figure (4-7): Strengthening Details for Specimen (CLB3)	50
Figure (4-8): Strengthened Specimen (CLB4)	51

Figure (4-9): Strengthening Details for Specimen (CLB4)	52
Figure (4-10): Wood Forms	54
Figure (4-11): Steel cage	55
Figure (4-12): Preparation before Casting.	55
Figure (4-13): Casting L- Specimens.	56
Figure (4-14): The Mechanical Vibrator during Casting	56
Figure (4-15): Pipes with Diameter 12mm each 100mm	57
Figure (4-16): Specimens after Casting.	58
Figure (4-17): Marking the Position of the Sheets	59
Figure (4-18): Cleaning the Surface	59
Figure (4-19): Surface Preparing (using Sikadur 41CF)	60
Figure (4-20): Wrapping the CFRP Sheets	60
Figure (4-21) Test setup.	62
Figure (4-22): The Loaded I-Beam Connected to the Two Steel Arms	63
Figure (4-23): The Experimental Test Setup	63
Figure (4-24): The Strain Gauge	65
Figure (4-25): Strain Gauge for Stirrups	65
Figure (4-26): Strain Gauge for Steel Reinforcement	66
Figure (4-27): Distribution of Strain Gauges on Stirrups and Longitudinal Steel	66
Figure (4-28): Position of Dial Gauge	67
Figure (4-29) DEMEC Points in Control Specimen	68
Chapter 5	
Figure (5-1): Torsional Moment-Deflection Curve for Specimen (LB)	71
Figure (5-2): Torsional Moment-Twist Angle Curve for Specimen (LB)	72
Figure (5-3): Torsional Moment-Strain of Stirrups Curve for Specimen (LB)	73
Figure (5-4): Torsional Moment- Strain of long Steel Curve for Specimen (LB)	74
Figure (5-5): Torsional Moment- Strain of Concrete Curve for Specimen (LB)	75
Figure (5-6): Torsional Moment-Deflection Curve for Specimen (CLB1)	77

Figure (5-7): Torsional Moment-Twist Angle Curve for Specimen (CLB1)	78
Figure (5-8): Torsional Moment-Strain of Stirrups Curve for Specimen (CLB1)	79
Figure (5-9): Torsional Moment- Strain of long Steel Curve for Specimen (CLB1)	80
Figure (5-10): Torsional Moment- Strain of Concrete Curve for Specimen (CLB1)	81
Figure (5-11): Torsional Moment-Deflection Curve for Specimen (CLB2)	83
Figure (5-12): Torsional Moment-Twist Angle Curve for Specimen (CLB2)	84
Figure (5-13): Torsional Moment-Strain of Stirrups Curve for Specimen (CLB2)	85
Figure (5-14): Torsional Moment- Strain of long Steel Curve for Specimen (CLB2)	86
Figure (5-15): Torsional Moment- Strain of Concrete Curve for Specimen (CLB2)	87
Figure (5-16): Torsional Moment-Deflection Curve for Specimen (CLB3)	89
Figure (5-17): Torsional Moment-Twist Angle Curve for Specimen (CLB3)	90
Figure (5-18): Torsional Moment-Strain of Stirrups Curve for Specimen (CLB3)	91
Figure (5-19): Torsional Moment- Strain of long Steel Curve for Specimen (CLB3)	92
Figure (5-20): Torsional Moment- Strain of Concrete Curve for Specimen (CLB3)	93
Figure (5-21): Torsional Moment-Deflection Curve for Specimen (CLB4)	95
Figure (5-22): Torsional Moment-twist angle Curve for Specimen (CLB4)	96
Figure (5-23): Torsional Moment-Strain of Stirrups Curve for Specimen (CLB4)	97
Figure (5-24): Torsional Moment- Strain of long Steel Curve for Specimen (CLB4).	98
Figure (5-25): Torsional Moment- Strain of Concrete Curve for Specimen (CLB4)	99
CHAPTER 6	
Figure (6-1): Torque Moment-Angle of Twist for all Specimens Curve	105
Figure (6-2): Torque Moment-Displacement for all Specimens Curve	108
Figure (6-3): Torque Moment-Strain of Stirrup for all Specimens Curve	110
Figure (6-4): Torque Moment-Strain of longitudinal steel for all Specimens Curve	113
Figure (6-5): Torque Moment-Strain of Concrete for all Specimens Curve	115
Figure (6-6): Failure Mode for Specimen (LB)	119
Figure (6-7): Failure Mode for Specimen (CLB1)	120
Figure (6-8): Failure Mode for Specimen (CLB2)	122
Figure (6-9): Failure Mode for Specimen (CLB3)	123
Figure (6-10): Failure Mode for Specimen (CLB4)	124
Figure (6-11): Load-Displacement for all Specimens Curve.	125

Figure (6-12): First Crack and Failure Load for all Specimens	127
Figure (6-13): Cracking Torque and Ultimate Torque for Specimens	
(CLB2, CLB3 and CLB4)	131
Figure (6-14): Torque Moment-Angle of Twist Curve for Specimens	
(CLB2, CLB3 and CLB4)	133
Figure (6-15): Torque Moment-Strain of Stirrup for Specimens	
(CLB2, CLB3 and CLB4)	135
Figure (6-16): Torque Moment-Strain of longitudinal steel for Specimens	
(CLB2, CLB3 and CLB4)	137
Figure (6-17): Torque Moment-Strain of Concrete for Specimens Curve	
(CLB2, CLB3 and CLB4)	139
CHAPTER 7	
Figure (7-1) Typical Wrapping Schemes for Shear Strengthening using FRP	
Laminate	145
Figure (7-2) Illustration of the Dimensional Variables used in Shear-Strengthening	
Calculations for Strengthening using FRP Laminates	145
Figure (7-3) Comparison between Experimental and Theoretical Results of the	
Ultimate Torque for all Tested Specimens	151