Normal Values of Echocardiography in Egyptian Population

Thesis submitted for partial fulfillment of the Doctor Degree in Cardiology

By **Ehab Mohamed Elfiki**

Under supervision of

Professor Maiy Hamdy Elsayed

Professor of Cardiology Ain Shams University

Professor Hossameldin Saleh Elghetany

Professor of Cardiology
Ain Shams University

Professor Azza Abdallah Elfiki

Professor of Cardiology Ain Shams University

Doctor Ghada Samir Elshahed

Assistant Professor of Cardiology Ain Shams University

Cardiology department Faculty of medicine 2010

List of Content

Title	Page
-Acknowledgement	IV
-List of abbreviation	V
-List of Tables	VIII
-List of figures	X
-Introduction	1
-Review of literature	
1-Chapter 1	3
Pediatric Echocardiography	
2-Chapter 2	43
Tissue Doppler Echocardiography	
3-Chapter 3	64
Growth and Development	
-Subjects and methods	73
-Results	85
-Discussion	138
-Conclusion and Recommendations	145
-Summary	146
-References	149
-Master Table	170
-Arabic summary	252

Acknowledgement

I appreciate and thank **Prof. Dr. Maiy Hamdy El Sayed,** Professor of Cardiology, Ain Shams University, the person who gave me the honor by helping me by her precious recommendations and contributive comments that served much in the construction of this work.

Thanks are also to **Prof. Dr. Hussam El din Saleh Elghetany**, Professor of Cardiology, Ain Shams University who supported and encouraged me.

My sincere thanks for **Prof Dr. Azza Abd Alla El Fiky,** Professor of Cardiology, Ain Shams University who gave me a lot of her time and also read every word written in this thesis.

Also, thanks for **Dr. Ghada Samir Khalil El Shahed**, Assistant Professor of Cardiology, Ain Shams University who helped me a lot, in my work by her expertise in doing echocardiography

A lot of thanks for **Dr. Alaa Roushdy**, lecturer of Cardiology, Ain Shams University. The kind person who taught me how to do an echocardiogram and supported me in every step in this work.

I am also very grateful to **Dr. Wael El Mallah** lecturer of Cardiology, Ain Shams University. Who gave me a lot of his time to fulfil this work.

List of abbreviation

2D LA LE	Left atrial length by 2D
2D LA WI	Left atrial width by 2D
2D LV DL	Left ventricular diastolic length by 2D
2D LV DW	Left ventricular diastolic width by 2D
2D LV SL	Left ventricular systolic length by 2D
2D LV SW	Left ventricular systolic width by 2D
2D RA LE	Right atrial length by 2D
2D RA WI	Right atrial width by 2D
2D RV DL	Right ventricular diastolic length by 2D
2D RV DW	Right ventricular diastolic width by 2D
2D RV SL	Right ventricular systolic length by 2D
2D RV SW	Right ventricular systolic width by 2D
A TDI	Diastolic wave of atrial contraction by tissue Doppler imaging.
ACS	Aortic cusps separation
AFV	Aortic flow velocity
AO D	Aortic root diameter in diastole.
Aort Annul	Aortic valve annulus
ASE	American society of echocardiography
BMI	Body mass index.
BSA	Body surface area.
Dop Ao	Aortic flow maximum velocity
Dop m A	Mitral flow A wave maximum velocity
Dop m A	Tricuspid flow A wave maximum velocity
Dop mit E	Mitral flow E wave maximum velocity
Dop tric E	Tricuspid flow E wave maximum velocity
E TDI	Early diastolic relaxation wave by tissue Doppler imaging.
EF	Ejection fraction.
FS	Fractional Shortening
FS	Fractional shortening.
IRT	Isovolumetric relaxation time.
IVSd	Interventricular septal thickness in diastole by M mode
IVSD	Interventricular septal thickness in diastole
LA major	Major axis of the left atrium.

LA minor Minor axis of the left atrium.	
LAD Left atrium diameter.	
LAL Left atrial length	
LAS Left atrium in systole.	
LAW Left atrial width	
LV Left ventricle	
LV EF Left ventricular Ejection Fraction	
LVDd Left ventricular diastolic dimension by M mode	
LVDd Left ventricular diastolic dimension	
LVDs Left ventricular systolic dimension by M mode	
LVEDS Left ventricular end diastolic diameter.	
LVPWd Left ventricular posterior wall diastolic thickness by M	mode
LVPWD Left ventricular posterior wall thickness in diastole	
LVSd Left ventricular systolic dimension	
M Ao Aortic root diameter by M mode	
M Ao Cus Aortic Cusp separation by M mode	
M LA Left atrial dimension by M mode	
M RV Right ventricular dimension by M mode	
MAL Lateral mitral annulus.	
MAS Septal mitral annulus.	
Mit Annul Mitral annulus	
MTD Color M- mode tissue Doppler.	
MVG Myocardial velocity gradient.	
NCHS National center for health statistics.	
PAT Pulmonary flow acceleration time	
Pulm annul Pulmonary valve annulus	
PWT Posterior wall thickness	
PW-TDI Pulsed wave- tissue Doppler imaging.	
RA major Major axis of the right atrium.	
RA minor Minor axis of the right atrium.	
RAL Right atrial length	
RAW Right atrial width	
RV Right ventricle	
RV major Major axis of the right ventricle.	
RV minor Minor axis of the right ventricle.	
RVD Right ventricular diameter.	
RVDD Right ventricular end diastolic diameter.	

DVECD	D'.14
RVESD	Right ventricular end systolic diameter.
RVL	Right ventricular length
RVW	Right ventricular width
S TDI	Systolic wave by tissue Doppler imaging.
Td M ant A	Maximum velocity of tissue Doppler A wave of anterior wall of mitral valve
Td M ant E	Maximum velocity of tissue Doppler E wave of anterior wall of mitral valve
Td M ant S	Maximum velocity of tissue Doppler S wave of anterior wall of mitral valve
Td M inf A	Maximum velocity of tissue Doppler A wave of inferior wall of mitral valve
Td M inf E	Maximum velocity of tissue Doppler E wave of inferior wall of mitral valve
Td M inf S	Maximum velocity of tissue Doppler S wave of inferior wall of mitral valve
Td M lat A	Maximum velocity of tissue Doppler A wave of lateral wall of mitral valve
Td M Lat E	Maximum velocity of tissue Doppler E wave of lateral wall of mitral valve
Td M lat S	Maximum velocity of tissue Doppler S wave of lateral wall of mitral valve
Td M sp A	Maximum velocity of tissue Doppler A wave of septal wall of mitral valve
Td M sp E	Maximum velocity of tissue Doppler E wave of septal wall of mitral valve
Td M sp S	Maximum velocity of tissue Doppler S wave of septal wall of mitral valve
Td T lat A	Maximum velocity of tissue Doppler A wave of lateral wall of tricuspid valve
Td T lat E	Maximum velocity of tissue Doppler E wave of lateral wall of tricuspid valve
Td T lat S	Maximum velocity of tissue Doppler S wave of lateral wall of tricuspid valve
Tric Annul	Tricuspid annulus

List of Tables

Number	TITLE	Page
Table (1)	Structures viewed from standard examination views	7
Table (2)	3%, 50% and 97% percentiles of the values of	16
	echocardiographic measurements relative to the body	
	surface	
Table (3)	Elements of image acquisition and measurement For	24
	2-dimensional quantitation	
Table (4)	Doppler measurements.	36
Table (5)	Severity of malnutrition: stunting and wasting.	68
Table (6)	Number of patients in each age group	85
Table (7)	Gender distribution of included subjects	85
Table (8)	Mean±SD for atrial dimensions by 2D in cm	87
	according to age in years.	
Table (9)	Mean±SD for valve annulus by 2D in cm according	89
	to age	
Table (10)	Mean±SD for RV dimensions (length and width) by	91
	2D in cm according to age	
Table (11)	Mean±SD for LV dimensions by 2D in cm according	93
	to age	
Table (12)	Mean±SD for RV and LV dimensions by M mode in	95
T 11 (10)	cm according to age	0.7
Table (13)	Mean±SD for Aorta, aortic cusp separation and Left atrial dimensions by M mode in cm according to age	97
Table (14)	Mean±SD for Doppler parameters according to age.	99
Table (15)	Mean±SD of Tissue Doppler parameters S (systolic	104
14616 (16)	wave), E (early diastolic wave) and A (late diastolic	101
	wave) of lateral aspect of mitral ring according to	
	age	
Table (16)	Mean±SD of Tissue Doppler parameters of septal	106
	aspect of mitral ring according to age.	

Number	TITLE	Page
Table (17)	Mean±SD of Tissue Doppler parameters of anterior	108
	aspect of mitral ring according to age.	
Table (18)	Mean±SD of Tissue Doppler parameters of inferior	110
	aspect of mitral ring according to age.	
Table (19)	Mean±SD of Tissue Doppler parameters of lateral	112
	wall of tricuspid valve ring according to age	
Table (20)	Mean±SD of Atrial dimensions by 2D according to BSA	114
Table (21)	Mean±SD of valve annulus by 2D in cm according to BSA	116
Table (22)	Mean±SD of RV dimensions by 2D in cm according to BSA	117
Table (23)	Mean±SD of LV dimensions by 2D according to BSA	119
Table (24)	Mean±SD of RV and LV dimensions by M mode	121
	according to BSA	
Table (25)	Mean±SD of aorta and left atrium dimensions by M	123
	mode according to BSA	
Table (26)	Mean±SD of Doppler parameters according to BSA	125
Table (27)	Mean±SD of Tissue Doppler parameters of lateral	129
	aspect of mitral ring according to BSA	- - >
Table (28)	Mean±SD of Tissue Doppler parameters of septal	131
	aspect of mitral ring according to BSA	
Table (29)	Mean±SD of Tissue Doppler parameters of anterior	132
. ,	aspect of mitral valve according to BSA	
Table (30)	Mean±SD of Tissue Doppler parameters of inferior	134
` '	aspect of mitral valve according to BSA	
Table (31)	Mean±SD of Tissue Doppler parameters of lateral	136
ζ- /	aspect of tricuspid valve according to BSA	130

List of Figures

Number	TITLE	Page
Figure (1)	The biplane Simpson method	19
Figure (2)	the tissue Doppler image	46
Figure (3)	The color-coded tissue Doppler image of the normal left ventricle	46
Figure (4)	Mitral annular movement by pulsed wave tissue doppler	50
Figure (5)	Strain and strain rate imaging of LV	53
Figure (6)	Myocardial velocity integral by tissue doppler	55
Figure (7)	The mitral inflow and pulsed-tissue Doppler of the lateral mitral annulus.	57
Figure (8)	The medial mitral annular time-velocity plots are derived from color-coded tissue Doppler M-mode echocardiogram	59
Figure (9)	Doppler M-mode imaging of the left ventricular posterior wall	60
Figure (10)	The schematic diagram shows the early diastolic pattern of the myocardial velocity gradient (MVG)	61
Figure (11)	Examples of PW-TDI from a normal subject, a patient with a restrictive cardiomyopathy and a patients with constrictive pericarditis	62
Figure (12)	The left ventricular filling pressures estimated using transmitral velocity (panel A), mitral annular velocity (panel B) and the flow propagation velocity(panel C).	63
Figure (13)	Standard growth curves for Egyptian children	69
Figure (14)	2-D echocardiography: left parasternal long axis view	75
Figure (15)	2-D echocardiography: left parasternal short axis view	76
Figure (16)	2-D echocardiography: Apical 4-chamber view	77
Figure (17)	2-D echocardiography the apical 5 chamber view	77
Figure (18)	2-D echocardiography the apical 2 chamber view	78
Figure (19)	M-mode echocardiography: at the level of aortic leaflets showing aorta, left atrium diameter and aortic cusps separation	79
Figure (20)	M-mode echocardiography: at the level of papillary muscle	79
Figure (21)	continues wave Doppler echocardiography: Apical 4-chamber view showing tricuspid flow velocities	81
Figure (22)	continues wave Doppler echocardiography: left parasternal short axis view showing pulmonary flow velocities	82

Number	TITLE	Page
Figure (23)	Pulsed wave Doppler echocardiography: Apical 4-chamber view showing mitral flow velocities	82
Figure (24)	Contineus wave Doppler echocardiography: Apical 5-chamber view showing aortic flow velocities	83
Figure (25)	Pulsed TDI tracings of lateral mitral annular motion were recorded from an apical 4- chamber view	84
Figure (26)	gender distribution of included subjects	86

Introduction

Echocardiography is widely used to diagnose congenital heart defects or exclude cardiac involvement in infectious, neuromuscular, or metabolic disorders.

Echocardiography allows the non-invasive assessment of the dimensions and anatomy of the heart and its functional characteristics.

Because of these aspects this exam has become the key to diagnose, assess the repercussions and follow up on children and adolescents with suspicion of or with cardiopathy (*Phoon et al.*, 1999).

Normal values for dimensions and functions of the heart are very important to avoid misclassification of normal children into the high risk category and the reverse (Burke et al., 1986).

Many studies reported that there is a significant difference of left ventricular dimensions and functions according to body size, heart rate, sex and race (**De Simone et al., 2001**).

Other studies showed racial variation in Echocardiography between black and white children, as they found that left ventricular posterior wall in diastole by echocardiography was thicker in black than in white (**Reo et al., 1984**).

The definition of normal values of Egyptian children would be very valuable for pediatric cardiologist in both diagnosis and decision making.

Aim of the study

The aim of this study is to define the normal echocardiographic values for Egyptian children aged 6-18 years. Using M- mode, two- dimensional echocardiography, Doppler measurements, as well as pulsed wave tissue Doppler.

Chapter 1

Pediatric Echocardiography

Echocardiography has become the primary imaging tool in the diagnosis and assessment of congenital and acquired heart disease in infants, children, and adolescents.

Transthoracic echocardiography (TTE) is an ideal tool for cardiac assessment, as it is noninvasive, portable, and efficacious in providing detailed anatomic, hemodynamic, and physiologic information about the pediatric heart (**Henry et al., 1980**).

The pediatric echocardiogram is a unique examination with features that distinguish it from other echocardiograms (Fouron et al., 1998).

Certain views are of added importance for pediatric examinations: the subxiphoid (or sub costal), suprasternal notch, and right parasternal views. The acquisition and proper display of images from these views are critical aspects of the pediatric TTE. In addition, special techniques are required for imaging uncooperative infants and young children, including sedation and distraction tools that will allow performance of a complete examination (Waggoner et al., 2001, Thys et al., 1996 and Stewart W et al., 1999).

Indications of pediatric echocardiography:

Knowledge of indications for an echocardiogram is important to obtain the information required for the diagnosis and proper treatment of the pediatric patient (Cheitlin et al., 1997).

Children with suggested or known heart disease frequently require serial studies to evaluate the evolution or progression of heart disease. Serial studies may be indicated at routine intervals for monitoring of valve function, growth of cardiovascular structures, ventricular function, and potential sequelae of medical or surgical intervention (Geva et al., 1995, McElhinney et al., 2001 and Shluysmans et al., 2005).

1-Congenital Heart Disease:-

Indications for the performance of a pediatric echocardiogram span a wide range of symptoms and signs, including cyanosis, failure to thrive, exercise induced chest pain or syncope, respiratory distress, murmurs, congestive heart failure, abnormal arterial pulses, or cardiomegaly.

Certain syndromes, family history of inherited heart disease, and extracardiac abnormalities that are known to be associated with congenital heart disease constitute clinical scenarios for which echocardiography is indicated even in the absence of specific cardiac symptoms and signs. Abnormalities on other tests such as fetal echocardiography, chest radiograph, electrocardiogram, and chromosomal analysis constitute another group in which the suggestion of congenital heart disease is addressed specifically by echocardiography (**Gutgesell et al., 1990**).

2-Acquired Heart Diseases and Noncardiac Diseases:

An echocardiogram is indicated for the evaluation of acquired heart diseases in children, including Kawasaki disease, infective endocarditis, all forms of cardiomyopathies, rheumatic fever and carditis, systemic lupus erythematosus, myocarditis, pericarditis, HIV infection, and exposure to cardiotoxic drugs. Pediatric echocardiography is indicated in the assessment of potential cardiac or cardiopulmonary transplant donors and transplant recipients. Recently,