

Molecular Design and Synthesis of Certain Indazole Derivatives with Potential Anticancer Activity

Thesis

Presented by

Nevine Mohammed Yehya

BSc. In Pharmaceutical Sciences (May 2009)
Instructor of Pharmaceutical Chemistry
Faculty of Pharmacy, Ain Shams University

Submitted in partial fulfillment of the

Master Degree

In Pharmaceutical Chemistry

Under the supervision of

Prof. Dr. / Dalal A. Abou El Ella

Professor of Pharmaceutical Chemistry & Head of Pharmaceutical Chemistry Department Faculty of pharmacy-Ain Shams University

Prof. Dr. / Khaled A. M. Abouzid

Professor of Pharmaceutical Chemistry & Vice Dean for the Educational & Student Affairs Faculty of pharmacy-Ain Shams University

Dr. / Rabah A. Taha

Lecturer of Pharmaceutical Chemistry
Ain Shams University

Faculty of Pharmacy

Ain Shams University

2015

Besides the work presented in this thesis, the candidate successfully passed general and special postgraduate courses in Pharmaceutical Chemistry for one year during academic year 2010/2011 with the following grades

1)	Ctatistics	Evenllont
11	Statistics	Excellent

2) Instrumental Analysis Excellent

3) Computer Sciences Excellent

4) Physical Chemistry Excellent

5) Pharmaceutical Excellent

Chemistry

6) Drug spectroscopy Good

7) Selected Topics in Very Good

Pharmaceutical Chemistry

8) Drug Stereochemistry Excellent

Contents

Acknowledgement	iv
List of figures:	v
List of tables:	viii
List of Abbreviations	ix
Abstract:	xii
1. Introduction:	1
1.1. Cancer:	1
1.1.1. Definition:	1
1.1.2. Development:	1
1.1.3. Cancer hallmarks:	3
1.1.4. Aetiology and carcinogenic factors:	3
1.1.5. Epidemiology:	4
1.1.6. Cancer therapy:	4
1.2. Indazole scaffold:	30
1.2.1. Overview on the medicinal importance of indazoles:	30
1.2.2. Indazole derivatives as kinase inhibitors:	30
1.2.3. Indazole derivatives as VEGFR-2 kinase inhibitors:	30
2. Rationale and Design	32
2.1 Design process based on:	32
2.1.1. Structure Activity Relationship Study (SAR)	32
2.1.2. Identification of the key interactions with the binding site of both type I and type II inhibitors	
2.1.3. Design of novel indazole based VEGFR-2 inhibitors:	35
2.2. Preliminary evaluation of the designed compound using Molecular modelling technique	es:40
2.3. Schemes for synthesis of the designed compounds:	44
3. Results and discussion:	47
3.1. Chemistry:	47
3.2. Biological evaluation:	59
3.2.1. Enzyme inhibition assay:	59
3.2.2. In vitro anticancer activity:	
3.3. Molecular Modeling:	81

Contents

3.3.1. Design process:	81
3.3.2. Molecular Docking study using Discovery Studio Module:	81
3.3.3. Field alignment study:	96
4. Experimental:	100
4.1. Chemistry:	100
4.1.1. Materials and methods:	100
4.2. Biological evaluation:	124
4.2.1. In vitro enzyme assay:	124
4.2.2. In vitro anticancer activity:	124
4.2.3. Human Umbilical Vein Endothelial Cell (HUVEC) Proliferation Assay:	126
5.Conclusion:	
6.References:	130

Acknowledgement

I am profoundly indebted to **Professor Dr. Dalal Abdelrahman Abou El Ella**, Professor of Pharmaceutical Chemistry & Head of Pharmaceutical Chemistry Department, for her kind supervision, innovative ideas, fruitful opinion, invaluable advices, precious suggestions, continuous encouragement and spiritual support. I truly thank her for her great efforts which allowed this thesis to appear in its final form.

I owe deep appreciation and truthful gratitude to **Professor Khaled Abouzid Mohamed Abouzid,** Professor of Pharmaceutical Chemistry and Vice Dean for Educational and Student Affairs for his scientific supervision, innovative ideas, great efforts, precious suggestions and untiring help. I am really sincerely and profoundly indebted to him for his priceless guidance throughout the whole work.

I would like also to express my sincere thanks to **Dr. Rabah Ahmed Taha Serya,** Lecturer of Pharmaceutical Chemistry, for her kindness, continuous encouragement, indispensible assistance, valuable guidance and constant support throughout the whole work.

I acknowledge with thankfulness all my friends in Pharmaceutical Chemistry Department, for their friendly cooperation, support and their unconditional love and aid.

Also I would like to express my gratitude to the National Cancer Institute, Maryland, U.S.A for performing the cytotoxicity assay of the synthesized compounds.

Finally, I am profoundly indebted to my parents and my friends for continuous support and assistance.

List of figures:

Fig. 1: Effect of oncogenic events type an order on the phenotypic characteristics of cancer ⁵	2
Fig. 2: Stages of tumor metastasis ⁸	2
Fig. 3: Emerging new targets for molecularly targeted cancer therapy ⁴⁹	14
Fig. 4: Epigenetic abnormalities involved in colorectal cancer ⁵²	15
Fig. 5: Diagram of key signalling pathways resulting from RTK activation that contribute to	cancei
development ⁵⁹ .	17
Fig. 6: A representative protein kinase ATP substrate complex, showing the insulin receptor kinase in co	omplex
with ATP and a small peptide substrate (PDB: 1IR3). The ATP binding pocket within the protein kinase of	domair
lies deep within a cleft bound by the N-terminal lobe, hinge regions and C-terminal lobe ⁶⁵	18
Fig. 7: 2D representation of the regions located in the ATP binding site ⁶¹	19
Fig. 8: DFG-in and DFG-out conformation. (A) The DFG-in active conformation (magenta) of p38 α wi	th ATF
bound in the ATP pocket (yellow). The three phosphates and the side chain of aspartate complex to the	ie Mg ²
cofactor (red). (B) The phenyl ring of Phe169 in the active state (magenta) rotates around the C-N b	ond o
Asp 168 and positions the phenyl ring $10\ \text{Å}$ away and into the ATP pocket. This movement results in the D)FG-ou
inactive state shown in green ⁶⁶ .	19
Fig. 9: Strategies for inhibition of signalling pathways by kinase inhibition ⁵⁹	21
Fig. 10: Type I, II, and III kinase inhibitors. (a) Type I inhibitors form H-bonds with the kinase hinge regi	ion and
occupy the adenosine binding pocket (blue). Shown is the inhibitor PP1 in complex with HCK (PDB ID $1QG$	CF). (b)
Type II inhibitors occupy the adenosine pocket, but unlike type I binders, they induce DFG-OUT conformation of the conformatio	mation
Shown is imatinib in complex with Abl (PDB ID 1FPU). (c) Type III inhibitors block kinase activity v	withou
displacing ATP. Shown is the MEK1 inhibitor PD318088 binding site (green) (PDB ID 1S9J) ⁶⁵	22
Fig.11: 2D interaction digram of the small- molecule kinase inhibitor binding site ⁷⁸	23
Fig. 12: Steps of tumor angiogenesis and growth illustrating role of different proangiogenic factors 91	26
Fig. 13: Signaling pathways activated by VEGF99.	28
Fig. 14: Schematic illustration of the expression patterns, ligand specificity and cellular/physiological effects	fects o
each of the vascular endothelial growth factor receptors (VEGFRs)98.	28
Fig. 15: SAR of various potent KDR inhibitors. Hinge binders are shown in dark blue, side chains that	occupy
the solvent accessible region are shown in light blue, moieties that target the back hydrophobic pool	ket are
shown in pink color and the extra hydrophobic moieties are shown in orange	34
Fig. 16: Hydrogen bond interaction of the most common hinge binders with Cys 919	35
Fig. 17: Binding of Pazopanib (31) in VEGFR-2 kinase binding site ¹³⁰	
Fig. 18: Design of pazopanib analogues.	37

Fig. 19: Design of type II inhibtors using different scaffolds as hinge binders
Fig. 20: Design of type II inhibitors based on the naphthalimide based lead compound
Fig. 21: Several examples of inhibitors having the hinge binder- 3-aminoindazole, oxazole and triazine
respectively- directly attached to an aromatic ring system
Fig22: Design of target compounds based on oxazole based lead compound40
Fig. 23: A) Field alignment of compound (Vi) with reference molecule (PDB code: 3CJf), B) Field alignment of
compound (XVc) with lead compound PDB code: 1Y6B. Reference molecules are shown in pale green while
target compounds are shown in grey. Positive field appears in red, negative field appears in blue, hydrophobic
field appears in pale yellow and shape fields are represented by bright yellow color41
Fig. 24: A) Field alignment of compound (Xa) with reference molecule (PDB code: 3B8Q), B) Field alignment of
compound (XIIIb) with reference molecule (PDB code: 3B8Q). Reference molecules are shown in pale green
while target compounds are shown in grey43
$\textbf{Fig. 25:} \ \ \text{Cyclization of 2-methyl-4-nitroaniline into indazole through hydroxy diazine intermediate} \\ \textbf{13647} \\ \textbf{25:} \ \ \text{Cyclization of 2-methyl-4-nitroaniline into indazole through hydroxy diazine intermediate} \\ \textbf{26:} \ \ \textbf{27:} \\ \textbf{27:} \\ \textbf{27:} \ \ \textbf{27:} \\ \textbf{27:} \\$
$\textbf{Fig. 26:} \ \ \text{Tautomeric forms of indazole with the equilibruim shifted towards the formation of } 1 \textit{H-} indazole \textsubstitution of$
Fig. 27: Jacobson synthesis of indazole fron 2-alkyl aniline
Fig. 28: Mechanism of synthesis of indazole from o-toluidine ¹⁴⁰ .
Fig. 29: Mechanism of cyclization of hydraone intermediate into indazole ¹⁴³
Fig. 30: Mechanism of indazole synthesis from salicylaldehyde ¹⁴⁸ .
Fig. 31: Dose response curve of compound (Ve) (S782142) and (Vf) (S782128) against the NCI full panel of
cancer cell lines
Fig. 32: Dose response curve of compound (XIIIa) (S781954) and (XIIIc) (S781956) against the NCI 60 cancer
cell line
Fig. 33: Binding of alkylated co-crystallized ligand with VEGFR-2 kinase (PDB: 3CJG) showing S-shaped
conformation. B: Binding of non alkylated co-crystallized ligand with VEGFR-2 kinase (PDB: 3CJF) showing U-
shaped conformation. Hydrogen bonds are represented as green dotted lines and $\pi\text{-}\pi$ interactions are
represented as orange lines85
Fig. 34: Predicted binding mode of (Vi), B: Predicted binding mode of (Vh) with VEGFR-2 kinase (PDB: 3CJF).
Hydrogen bonds are represented as green dotted lines and π - π interactions are represented as orange lines85
Fig. 35: Binding mode of lead compound (36) (PDB: 3B8Q)
Fig. 36: Binding mode of compounds (Xa) in the ATP binding site of VEGFR-2 tyrosine kinase88
Fig. 37: Binding mode of compounds (Xe) in the ATP binding site of VEGFR-2 tyrosine kinase88
Fig. 38: Predicted binding mode of compounds (Xf) (3D in upper figure and 2D in lower figure) in the ATP
binding site of VEGFR-2 tyrosine kinase.

List of Figures

Fig. 39: Predicted binding mode of lead compound co-crystallized with VEGFR-2 kinase (PDB: 3EWH)92
Fig. 40: Predicted binding mode of (XIIIe) with VEGFR-2 kinase92
Fig. 41: Predicted binding mode of compounds (XVIIc) (3D in upperfiure and 2D in lower figure) in the ATP
binding site of VEGFR-2 tyrosine kinase93
Fig. 42: 3D and 2D representation of the binding mode of compound (XVc) with VEGFR-2 kinase. Hydrogen
bonds are represented as green dotted lines and π - π and π - σ interactions are represented as orange lines95
Fig. 43: Negative field of lead compound of series(Va-j) (PDB:3CJF). Negative field appears as blue surface96
Fig. 44: Comparing the negative field of compound (Vc) (to the left) and compound (Va) (to the right)97
Fig. 45: Comparing the negative field of compound (Vi) (to the left) and compound (Vj) (to the right)97
Fig. 46: Comparing the negative field of compound (XVc) (to the left) and compound (XVa) (to the right)98
Fig. 47: Negative field of lead compound (36) of series (IXa-d) and (Xa-e) (PDB:3B8Q)98
Fig. 48: Comparing the negative field of compound (IXa) (to the left) and compound (Xa) (to the right)99

List of tables:

Table 1: Selected examples ofclinically approved small molecule kinase inhibitors ^{65,79-85} .	23
Table 2: Molecular structures of the designed compounds with their lead compounds showing the score	s of their
field alignment.	42
Table3: VEGFR-2 inhibition by series (Va-j) and (VI)	59
Table 4: VEGFR-2 inhibition by series (IXa-d) and (Xa-e)	60
Table 5: VEGFR-2 inhibition by (XI) and (XIIIa-d)	61
Table 6: VEGFR-2 inhibition by series (XVa-c)	62
Table 7: VEGFR-2 inhibition by series (XVIIa-c)	63
Table 8: Percent inhibition of the growth of NCI 60 cancer cell lines exerted by final compounds (Vb, V	c, Ve, Vf
and Vi)	67
Table 9: Calculated ALog P and PSA of (Vb, Vc, Ve, Vf and Vi) along with their mean % inhibition against	NCI cell
lines. Values are calculated by Discovery Studio 2.5.	69
Table 10: Percent inhibition of the growth of NCI 60 cancer cell lines exerted by final compounds VI, I	Xa, IXd ,
Xa, Xb and Xe at 10 μM.	70
Table 11: Percent inhibition of the growth of NCI 60 cancer cell lines exerted by final compounds a	t 10 μM
(XIIIa-c)	73
Table 12: Calculated ALog P and PSA of compounds(XIIIa)-c along with their mean % inhibition against	NCI cell
lines. Values are calculated by Discovery Studio 2.5.	75
Table13: Five dose assay results obtained for compounds (Ve), (Vf), (XIIIa) and (XIIIc)upon testing aga	ainst the
60 cancer cell lines of NCI screening program (the values are given by $\mu M)_{\dots}$	75
Table14 : Enzyme inhibition %of (Ve) and (Vf) against four different kinases at $10~\mu M$	80
Table 15: Results of scoring ligand poses of series (Va-j) as compared to the lead compound, along v	with the
results of their biological evaluation against VEGFR-2 kinase	86
Table 16 :results of scoring ligand poses of series (VI), (IXa-d) and (Xa-f) along with the results	of their
biological evaluation against VEGFR-2 kinase.	90
Table 17: LigScore2 values for series (XIIIa-e) and the lead compound co-crystallized with VEgFr-2	2 kinase
(PDB: 3EWH), along with their IC ₅₀ values against VEGFR-2.	94
Table 18: LigScore2 values for series (XVa-c) along with their IC ₅₀ values against VEGFR-2	95

List of Abbreviations

2D: Two dimensional5-FU: 5-Fluorouuracil6-MP: 6-Mercaptopurine

Å: Angstroms **AcOH:** Acetic acid

AcONa: Sodium acetate

ADP: Adenosine di phosphate.

AIDS: acquired immune deficiency syndrome

ATP: Adenosine triphosphate

BCR-ABL: Breakpoint cluster region-Abelson

CagA: Cytotoxin-associated gene A **CDK**: Cycline dependant kinase

CDOCKER: CHARMm-based DOCKER

CHARMm: Chemistry at HARvard macromolecular mechanics

DCM: Dichloro methane

DFG: Aspartate- Phenylalanine- Glycine

DHFR: Dihydrofolate reductase **DIPEA:** *N,N*-Diisopropylethylamine

DMF: Dimethyl formamide **DMSO**: Dimethylsulfoxide **DNA**: Deoxyribo neucleic acid

EGFR: Epidermal Growth Factor Receptor

ErbB-2: Human Epidermal Growth Factor Receptor 2

Et₂O: Diethyl ether EtOAc: Ethyl acetate

FDA: Food and Drug Administration **FGFR**: Fibroblast growth factor receptor **FLT kinase:** FMS-Like tyrosine kinase **FT-IR**: Fourier transform-Infrared

GA: Genetic algorithm **GI**₅₀: Growth Inhibition

GIST: gastrointestinal stromal tumors

GIT: Gastrointestinal tract

GLIDE: Grid-based ligand docking with energetics **GOLD**: Genetic optimization of ligand docking

Gl.: Glacial

Glide: Grid-based ligand docking with energetic

GSH: Glutathione

GST: Glutathione S-transferase **HCC:** Hepatocellular carcinoma

HER2: Human epidermal growth factor receptor 2

HIF: Hipoxia Inducible Factor

HIV: Human immunodeficiency virus

Hr: Hour

HUVEC: Human umbilical vein endothelial cell **IC50**: 50% Maximal ihibitory concentration.

i-PrOH: isopropanol

KDR: Kinase insert domain

LC50: Lethal Dose

MAPk: Mitogen-activated protein kinase

MC: Monte Carlo

MD: Molecular dynamics

MEK: Mitogen/extracellular signal-regulated kinase

MHz: Mega hertz

MS: Mass spectroscopy

NCI: National Cancer Institute.

nM: nanomole

NMR: Nuclear magnetic resonance **NRTK**: Non- receptor tyrosine kinase **NSCLc**: Non-small-cell lung carcinoma

Pd: Palladium

PDB: Protein data bank

PDGF: Platelet-derived growth factor

PDGFR: Platelet-derived growth factor receptor

Pet ether: Petroleum ether

PK: Protein Kinase **ppm:** Part per million **PSA:** Polar surface area

p-TsOH: Para toluene sulfonic acid

PIGF: Placental growth factor

RAF: Rapidly Accelerated Fibrosarcoma

RMSD: Root mean square deviation

rt: Room temperature RNA: ribo nucleic acid

RTK: Receptor tyrosine kinase

SAR: Structure Activity Relationship

SERMs: Selective estrogen receptor modulators

List of Abbreviations

Smac: Second mitochondrial activator of caspases

SMI: Small molecule inhibitors

SRC: Sarcoma

TEA:Triethyl amine **THF**: Tetrahydrofuran **TK**: Tyrosine kinase

TLC: Thin layer chromatography **USA**: United States of America **VDA**: Vascular disrupting agents

VEGF: Vascular endothelial growth factor

VEGFR: Vascular endothelial growth factor receptor

WHO: World Health Organization

μM: Micromole

Abstract:

Cancer is one of the major health problems as it is one of the most common causes of death worldwide. Development of targeted anticancer therapy has recently received more attention in order to inhibit some overexpressed molecular targets (enzymes and receptors) that are related to the abnormal nature of cancerous cell. Antiangiogenic therapy was introduced as promising anticancer treatment making use of the continuous need of tumor cell to nutrients and oxygen received through activating certain signalling pathways to provide high micro vessel density. Vascular endothelial growth factor (VEGFa) and its receptor VEGFR-2 are identified as key regulators of angiogenesis. Therefore, inhibition of VEGFR-2 tyrosine kinase (also known as kinase insert domain KDR) through design of small molecule inhibitors was the aim of this study.

A novel series of indazole-based compounds was designed, synthesized and biologically evaluated for their antiangiogenic and anticancer activity. The design process was based on comprehensive SAR study of various potent VEGFR-2 kinase inhibitors and supported by a field alignment study using Cresset BMD FieldAlign application.

The thesis describes the process of design, synthesis and biological evaluation of this new series of compounds covering the following topics:

1. Introduction

A brief account on cancer was given, describing the development of the disease, its main hallmarks and different ways of treatment. Also, an overview on tumor angiogenesis as a target for anticancer therapy was given, highlighting the role of VEGFR-2 as a therapeutic target. Additionally, an account on the medicinal chemistry of indazole as a scaffold was included.

2. Rationale and Design

A comprehensive SAR study was performed in order to determine the essential features required for the design of potent VEGFR-2 inhibitors. The process of design was described based on bioisosteric replacement and scaffold hopping approaches. The results of field alignment study was included; supporting the design rationale.

3. Chemistry

This study involves the synthesis of the following unavailable reported intermediates:

- 1. *N*-(2-Chloropyrimidin-4-yl)-1*H*-indazol-5-amine(IV)
- 2. *N*-(1*H*-Indazol-5-yl)-6,7-dimethoxyquinazolin-4-amine **(VIIIb)**
- 3. 1-(6,7-Dimethoxyquinazolin-4-yl)-1*H*-indazol-5-amine (XII)

Also, it comprises the following new intermediates:

- **1.** 6,7-Dimethoxy-4-(5-nitro-1*H*-indazol-1-yl)quinazoline **(XI)**
- 2. 1-(2-Chloropyrimidin-4-yl)-5-nitro-1*H*-indazole (XIV)
- 3. *N*-(4-Methoxyphenyl)-4-(5-nitro-1*H*-indazol-1-yl)pyrimidin-2-amine (XVa)
- **4.** *N*-(4-Chlorophenyl)-4-(5-nitro-1*H*-indazol-1-yl)pyrimidin-2-amine **(XVb)**
- **5.** 4-(5-Nitro-1H-indazol-1-yl)-*N*-(3,4,5-trimethoxyphenyl)pyrimidin-2-amine **(XVc)**

Moreover, these new target compounds were synthesized:

- 1. N^4 -(1*H*-Indazol-5-yl)- N^2 -(p-tolyl)pyrimidine-2,4-diamine (Va)
- **2.** N^2 -(4-Fluorophenyl)- N^4 -(1*H*-indazol-5-yl)pyrimidine-2,4-diamine **(Vb)**
- 3. N^2 -(4-Chlorophenyl)- N^4 -(1H-indazol-5-yl)pyrimidine-2,4-diamine (Vc)
- **4.** N^2 -(3,4-Dichlorophenyl)- N^4 -(1*H*-indazol-5-yl)pyrimidine-2,4-diamine **(Vd)**
- **5.** N^4 -(1*H*-Indazol-5-yl)- N^2 -(3-methoxyphenyl)pyrimidine-2,4-diamine **(Ve)**
- **6.** N^4 -(1*H*-Indazol-5-yl)- N^2 -(4-methoxyphenyl)pyrimidine-2,4-diamine (Vf)
- 7. N-(4-((4-((1H-Indazol-5-yl)amino)pyrimidin-2-yl)amino)phenyl)acetamide (Vg)
- **8.** *N*-(5-((4-((1*H*-Indazol-5-yl)amino)pyrimidin-2-yl)amino)-2-ethylphenyl)acetamide **(Vh)**
- 9. 4-((4-((1*H*-Indazol-5-yl)amino)pyrimidin-2-yl)amino)benzenesulfonamide (Vi)
- **10.** N^4 -(1*H*-Indazol-5-yl)- N^2 -(2-methyl-5-nitrophenyl)pyrimidine-2,4-diamine (Vi)
- 11. 5-((2-Chloropyrimidin-4-vl)amino)-N-phenyl-1H-indazole-1-carboxamide (VI)
- **12.** *N*-(3-Chloro-4-methylphenyl)-5-(quinazolin-4-ylamino)-1*H*-indazole-1-carboxamide **(IXa)**
 - **13.** *N*-(3,4-Dichlorophenyl)-5-(quinazolin-4-ylamino)-1*H*-indazole-1-carboxamide (**IXb**)
 - **14.** *N*-(3-Bromophenyl)-5-(quinazolin-4-ylamino)-1*H*-indazole-1-carboxamide (IXc)
- **15.** *N*-(5-Chloro-2,4-dimethoxyphenyl)-5-(quinazolin-4-ylamino)-1*H*-indazole-1-carboxamide **(IXd)**

- **16.** *N*-(3-Chloro-4-methylphenyl)-5-((6,7-dimethoxyquinazolin-4-yl)amino)-1*H*-indazole-1-carboxamide **(Xa)**
- **17**. *N*-(3,4-Dichlorophenyl)-5-((6,7-dimethoxyquinazolin-4-yl)amino)-1*H*-indazole-1-carboxamide **(Xb)**
- **18.** *N*-(3-Bromophenyl)-5-((6,7-dimethoxyquinazolin-4-yl)amino)-1*H*-indazole-1-carboxamide **(Xc)**
- **19**. *N*-(5-chloro-2,4-dimethoxyphenyl)-5-((6,7-dimethoxyquinazolin-4-yl)amino)-1*H*-indazole-1-carboxamide **(Xd)**
 - **20.** 5-((6,7-Dimethoxyquinazolin-4-yl)amino)-N-phenyl-1*H*-indazole-1-carboxamide (**Xe**)
 - 21. 5-((6,7-Dimethoxyquinazolin-4-yl)amino)-N-phenyl-1*H*-indazole-1-carbothioamide (Xf)
 - **22.** 1-(1-(6,7-Dimethoxyquinazolin-4-yl)-1*H*-indazol-5-yl)-3-phenylurea (XIIIa)
- **23.** 1-(3-Chloro-4-methylphenyl)-3-(1-(6,7-dimethoxyquinazolin-4-yl)-1*H*-indazol-5-yl)urea (XIIIb)
 - **24.** 1-(3,4-Dichlorophenyl)-3-(1-(6,7-dimethoxyquinazolin-4-yl)-1*H*-indazol-5-yl)urea **(XIIIc)**
 - **25.** 1-(3-Bromophenyl)-3-(1-(6,7-dimethoxyquinazolin-4-yl)-1*H*-indazol-5-yl)urea (XIIId)
- **26.** 1-(5-Chloro-2,4-dimethoxyphenyl)-3-(1-(6,7-dimethoxyquinazolin-4-yl)-1*H*-indazol-5-yl)urea **(XIIIe)**
- **27**. 1-(5-Chloro-2,4-dimethoxyphenyl)-3-(1-(2-((4-methoxyphenyl)amino)pyrimidin-4-yl)-1*H*-indazol-5-yl)urea **(XVIIa)**
- **28.** 1-(5-Chloro-2,4-dimethoxyphenyl)-3-(1-(2-((4-chlorophenyl)amino)pyrimidin-4-yl)-1*H*-indazol-5-yl)urea **(XVIIb)**
- **29.** 1-(5-Chloro-2,4-dimethoxyphenyl)-3-(1-(2-((3,4,5-trimethoxyphenyl)amino) pyrimidin-4-yl)-1*H*-indazol-5-yl)urea **(XVIIc)**

4. Biological evaluation

The biological activity of the compounds was evaluated at both molecular and cellular levels. The target compounds were biologically evaluated for their activity against VEGFR-2 kinase. Most of the target compounds exhibited excellent inhibitory activity against the enzyme. Compounds (XIIIb), (XIIIc) and (XIIIe) displayed significant potency against VEGFR-2 kinase; where they showed IC₅₀ of 1.4, 1.3 and 8.1 nM respectively. Compound (Vi) (IC₅₀=24.5 nM) was further evaluated for its cellular antiangiogenic activity against HUVEC cell line showing IC₅₀ of 1.37μM.