



# IMPLEMENTATION OF MODEL PREDICTIVE CONTROL FOR THREE PHASE INVERTER WITH OUTPUT *LC* FILTER USING DSP

# By Ihab Sami Mohamed Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
ELECTRONICS AND COMMUNICATIONS ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

# IMPLEMENTATION OF MODEL PREDICTIVE CONTROL FOR THREE PHASE INVERTER WITH OUTPUT *LC* FILTER USING DSP

## By Ihab Sami Mohamed Mohamed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in
ELECTRONICS AND COMMUNICATIONS ENGINEERING

#### Under the Supervision of

Prof. Dr. Mohamed Fathy Abu-Elyazeed

Electronics and Communications
Department
Faculty of Engineering, Cairo University

Associate Prof. Sherif Ahmed Zaid

Electrical Power and Machines
Department
Faculty of Engineering, Cairo University

Dr. Hany Mohamed Elsayed

Electronics and Communications
Department
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2014

**Engineer's Name:** Ihab Sami Mohamed Mohamed

**Date of Birth:** 22/12/1987 **Nationality:** Egyptian

**E-mail:** ehab\_sami87@yahoo.com

**Phone:** +2 01143526310

Address: El-Sheikh Zayed, Giza, Egypt

Registration Date: 1/10/2011
Awarding Date: .../.../.......

Degree: Master of Science

**Department:** Electronics and Communications Engineering

**Supervisors:** 

Prof. Dr. Mohamed Fathy Abu-Elyazeed Associate Prof. Sherif Ahmed Zaid Dr. Hany Mohamed Elsayed

**Examiners:** 

Prof. El Sayed Mostafa Saad (External examiner)

(Helwan University)

Prof. Magdi Fikri Mohamed (Internal examiner)
Prof. Mohamed F. Abu-Elyazeed (Thesis main advisor)

#### **Title of Thesis:**

Implementation of Model Predictive Control for Three Phase Inverter With Output LC Filter Using DSP

#### **Key Words:**

Predictive control; Model Predictive Control; power conversion; uninterruptible power systems; hysteresis control; PWM control; DSP; HIL.

#### **Summary:**

Model predictive control (MPC) is an advanced method of process control that has been enormously used in industry. In recent years, there has been a rapid increase in the use of digital controllers in control systems. The control of inverters with output LC filter has a special importance in applications where the high quality voltage is needed. Several control schemes have been proposed for the control of three-phase inverter. This thesis presents a new and simple control scheme using predictive control and implementing the proposed MPC on the eZdsp F28335 kit. The controller uses a discrete-time model of the system to predict the behavior of the output voltage for all possible switching states generated by the inverter. Then, a cost function is used as a criterion for selecting the switching state that will be applied during the next sampling interval. There is no need of internal current control loops and no modulators because the gate-drive signals are generated directly by the controller.



## **Table of Contents**

| Li | st of ' | <b>Fables</b> |                                                                  | iii |
|----|---------|---------------|------------------------------------------------------------------|-----|
| Li | st of l | Figures       |                                                                  | iv  |
| Li | st of S | Symbol        | s and Abbreviations                                              | vii |
| A  | cknow   | ledgen        | nents                                                            | ix  |
| De | edicat  | ion           |                                                                  | X   |
| Al | bstrac  | et            |                                                                  | xi  |
| 1  | Intr    | oductio       | on .                                                             | 1   |
| 2  | DSP     | for Co        | ontrol Systems                                                   | 7   |
|    | 2.1     | What          | is Digital Signal Processing?                                    | 7   |
|    | 2.2     |               | and Microprocessors                                              |     |
|    | 2.3     |               | -point vs. Floating-point DSPs                                   |     |
|    | 2.4     |               | ing the Processor                                                |     |
|    | 2.5     |               | 20 DSP Product Review                                            |     |
|    |         | 2.5.1         | Power Efficiency: TMS320C5000 DSP Platform                       | 11  |
|    |         | 2.5.2         | Control Optimized: TMS320C2000 DSP Platform                      | 12  |
|    |         | 2.5.3         | Highest Performance: TMS320C6000 DSP platform                    | 12  |
|    | 2.6     | DSP f         | or Control Systems                                               | 13  |
|    |         | 2.6.1         | Benefits of DSPs                                                 | 14  |
|    |         | 2.6.2         | Typical DSP Control Applications                                 | 15  |
|    | 2.7     | Overv         | iew of the Used eZdsp F28335 Kit                                 | 16  |
| 3  | Syst    |               | del and Predictive Control Strategies                            | 20  |
|    | 3.1     | The Pa        | roposed System Description                                       |     |
|    |         | 3.1.1         | The Inverter Model                                               |     |
|    |         | 3.1.2         | The Filter Models                                                |     |
|    |         |               | 3.1.2.1 The Filter Types                                         | 22  |
|    |         |               | 3.1.2.2 The <i>LC</i> Filter Model                               |     |
|    | 3.2     |               | iew of Predictive Control Strategies                             |     |
|    |         | 3.2.1         | Classification Based on Opertional Principle                     |     |
|    |         |               | 3.2.1.1 Hysteresis—Based Predictive Control                      |     |
|    |         |               | 3.2.1.2 Trajectory—Based Predictive Control                      |     |
|    |         |               | 3.2.1.3 Deadbeat—Based Predictive Control                        |     |
|    |         |               | 3.2.1.4 Model Predictive Control                                 |     |
|    |         | 322           | Classification Based on Prediction Horizon and Control Principle | 30  |

| 4 | The   | Propos  | sed MPC                                       | 32 |
|---|-------|---------|-----------------------------------------------|----|
|   | 4.1   | Model   | Predictive Control                            | 32 |
|   | 4.2   |         | ved Model Predictive Control                  |    |
|   | 4.3   | _       | ost Function                                  |    |
|   | 4.4   |         | cal Control Methods                           |    |
|   |       | 4.4.1   | Hysteresis Voltage Control                    |    |
|   |       | 4.4.2   | Linear Voltage Control with PWM               |    |
| 5 | Res   | ults    |                                               | 46 |
|   | 5.1   | Simula  | ation Results                                 | 46 |
|   |       | 5.1.1   | MPC                                           | 46 |
|   |       | 5.1.2   | MPC and Classical Methods                     | 54 |
|   |       | 5.1.3   | Improved MPC                                  |    |
|   | 5.2   | Hardw   | vare Testing                                  | 67 |
|   |       | 5.2.1   | System Verification Using Software Simulation |    |
|   |       | 5.2.2   | System Verification Using Hardware Testing    |    |
|   |       | 5.2.3   | Hardware-in-the-Loop (HIL) Simulation         | 68 |
|   |       | 5.2.4   | Experimental Results                          | 69 |
| 6 | Con   | clusion | s and Future Work                             | 81 |
| R | ferer | ices    |                                               | 83 |

### **List of Tables**

| 1.1 | IEEE 519 standards for total harmonic voltage distortion                 | 4  |
|-----|--------------------------------------------------------------------------|----|
| 3.1 | Possible switching states and voltage vectors for a three phase inverter | 21 |
| 5.1 | System Parameters                                                        | 46 |
| 5.2 | The effect of varying the filter capacitance value on the performance of |    |
|     | MPC                                                                      | 47 |
| 5.3 | A summary for different values of a resistive load                       | 64 |
| 5.4 | A summary for the nonlinear load with different values of $R$ and $C$    | 66 |
| 5.5 | System Parameters                                                        | 74 |
| 5.6 | A comparison between simulation and experimental results for different   |    |
|     | values of a resistive load                                               | 77 |

## **List of Figures**

| 1.1  | Ideal Sine wave                                                            | 2  |
|------|----------------------------------------------------------------------------|----|
| 1.2  | Distorted Waveform                                                         | 2  |
| 1.3  | Fundamental Frequency (50 Hz) Sine Wave and Harmonics: 2nd Har-            |    |
|      | monic (100 Hz); 3rd Harmonic (150 Hz); 4th Harmonic (200 Hz)               | 3  |
|      |                                                                            | _  |
| 2.1  | Digital signal processing logic                                            | 7  |
| 2.2  | Fixed point versus floating point DSP                                      | 9  |
| 2.3  | TMS Product Generation                                                     | 13 |
| 2.4  | The functional block diagram for eZdsp F28335 Kit                          | 18 |
| 2.5  | The platform picture of the eZdsp TMS320F28335 Kit                         | 19 |
| 3.1  | The three phase inverter with output $LC$ filter                           | 20 |
| 3.2  | Possible voltage vectors generated by the inverter                         |    |
| 3.3  | The types of filter                                                        | 23 |
| 3.4  | The <i>LC</i> filter model                                                 | 23 |
| 3.5  | Classification of predictive control methods used in power electronics     | 25 |
| 3.6  | Predictive current control, boundary circle, and space vector              | 27 |
| 3.7  | DSPC: Trajectories in the $e/a$ -state plane                               | 28 |
| 5.7  | Doi e. Trajectories in the c/t state plane.                                | 20 |
| 4.1  | The block diagram of MPC with only one prediction step                     | 32 |
| 4.2  | The simulation model of the voltage vector $v_i$                           | 34 |
| 4.3  | The simulation model of the filter current $i_f$                           | 34 |
| 4.4  | The simulation model of the output voltage $v_c$                           | 34 |
| 4.5  | The simulation model of the output current $i_o$                           | 35 |
| 4.6  | The simulation model of the output voltage reference $v_c^*$               | 35 |
| 4.7  | The inverter system simulation model using MPC with one prediction step.   | 36 |
| 4.8  | The flow chart of the proposed predictive control algorithm                | 37 |
| 4.9  | The block diagram of the Improved MPC with two prediction steps            | 38 |
| 4.10 | The inverter system simulation model using Improved MPC                    | 40 |
| 4.11 | The block diagram of hysteresis voltage control                            | 42 |
| 4.12 | The simulation model of the transformation $\alpha\beta/abc$               | 42 |
| 4.13 | The inverter system simulation model using hysteresis voltage control      | 43 |
| 4.14 | The block diagram of PWM voltage control                                   | 44 |
| 4.15 | The inverter system simulation model using PWM voltage control             | 45 |
| 5.1  | The simulated three phase output voltages and currents at steady state for |    |
| 3.1  | a resistive load of $3-\Omega$ . Voltage THD: $0.71\%$                     | 48 |
| 5.2  | The simulated three phase output voltages and currents at steady state for |    |
| 3.2  | a resistive load of $20-\Omega$ . Voltage THD: $1.71\%$                    | 48 |
| 5.3  | The effect of varying the inverter output voltage reference value on the   |    |
|      | THD at different resistive loads                                           | 49 |
| 5.4  | The simulated output voltages and currents according to full load step     | ., |
|      | change at $t = 0.05$ sec                                                   | 49 |
| 5.5  | The inverter nonlinear load                                                | 50 |

| 5.6                 | The simulated three phase output voltages and currents at steady state for             |            |
|---------------------|----------------------------------------------------------------------------------------|------------|
|                     | a nonlinear load. Voltage THD: 4.75%                                                   | 50         |
| 5.7                 | The simulated three phase output voltages and currents at steady state for             |            |
|                     | a nonlinear load with a sampling time of $T_s = 10 \ \mu s$ . Voltage THD: 2.18%.      | 51         |
| 5.8                 | The effect of varying the inverter output voltage reference value on the               |            |
|                     | THD at different nonlinear loads                                                       | 51         |
| 5.9                 | The simulated three phase output voltages and currents at steady state for a           |            |
|                     | resistive load of $20-\Omega$ with the filter capacitance of $20\mu F$ (-50%). Voltage |            |
|                     | THD: 2.60%.                                                                            | 52         |
| 5.10                | The simulated three phase output voltages and currents at steady state for             | -          |
| 0.10                | a resistive load of 20- $\Omega$ with the filter capacitance of $100\mu F$ (+150%).    |            |
|                     | Voltage THD: 1.01%                                                                     | 52         |
| 5.11                | The simulated three phase output voltages and currents at steady state for             | J_         |
| 5.11                | a nonlinear load with the filter capacitance of $20\mu F$ (-50%). Voltage THD:         |            |
|                     | 4.53%                                                                                  | 53         |
| 5 12                | The simulated three phase output voltages and currents at steady state for             | 33         |
| 3.12                | a nonlinear load with the filter capacitance of $100\mu F$ (+150%). Voltage            |            |
|                     | THD: 4 ((6))                                                                           | 53         |
| 5 12                | The simulated three phase output voltages and currents at steady state for             | 33         |
| 5.15                | a resistive load of $3-\Omega$ in case of MPC. Voltage THD: $0.71\%$                   | 55         |
| 5 1 1               | <del>_</del>                                                                           | 55         |
| 3.14                | The simulated three phase output voltages and currents at steady state for             | <i>5 5</i> |
| <i>5</i> 1 <i>5</i> | a resistive load of $3-\Omega$ in case of PWM control. Voltage THD: $3.13\%$           | 55         |
| 5.15                | The simulated three phase output voltages and currents at steady state for             |            |
| <b>7.1</b> 6        | a resistive load of $3-\Omega$ in case of hysteresis control. Voltage THD: 4.21%.      | 56         |
| 5.16                | The simulated three phase output voltages and currents at steady state for             | ~ _        |
| c 10                | a resistive load of 20- $\Omega$ in case of MPC. Voltage THD: 1.71%                    | 56         |
| 5.17                | The simulated output voltages and currents according to full load step                 |            |
|                     | change at $t = 0.05sec$ for a MPC                                                      | 57         |
| 5.18                | The simulated output voltages and currents according to full load step                 |            |
|                     | change at $t = 0.05sec$ for a PWM control                                              | 57         |
| 5.19                | The simulated output voltages and currents according to full load step                 |            |
|                     | change at $t = 0.05sec$ for a hysteresis control                                       | 58         |
| 5.20                | The simulated three phase output voltages and currents at steady state for             |            |
|                     | a nonlinear load for a MPC. Voltage THD: 3.02%                                         | 58         |
| 5.21                | The simulated three phase output voltages and currents at steady state for             |            |
|                     | a nonlinear load for a hysteresis control. Voltage THD: 50.66%                         | 59         |
| 5.22                | The simulated three phase output voltages and currents at steady state for             |            |
|                     | a nonlinear load for a PWM control. Voltage THD: 40.75%                                | 59         |
| 5.23                | The simulated three phase output voltages and currents for a MPC with                  |            |
|                     | 50- $\Omega$ load. Voltage THD: 2.30%                                                  | 61         |
| 5.24                | The simulated three phase output voltages and currents for a MPC with                  |            |
|                     | 2-k $\Omega$ load. Voltage THD: 3.84%                                                  | 61         |
| 5.25                | The simulated three phase output voltages and currents for a MPC with                  |            |
|                     | 4-M $\Omega$ load. Voltage THD: 6.12%                                                  | 62         |
| 5.26                | The simulated three phase output voltages and currents for the Improved                |            |
|                     | MPC with 50- $\Omega$ load. Voltage THD: 0.74%                                         | 62         |

| 5.27 | The simulated three phase output voltages and currents for the Improved MPC with $2-k\Omega$ load. Voltage THD: $0.76\%$ | 63 |
|------|--------------------------------------------------------------------------------------------------------------------------|----|
| 5.28 | The simulated three phase output voltages and currents for the Improved                                                  |    |
|      | MPC with 4-M $\Omega$ load. Voltage THD: 0.77%                                                                           | 63 |
| 5.29 | The simulated three phase output voltages and currents for a MPC with a                                                  |    |
|      | nonlinear load of $R = 60\Omega$ and $C = 3000 \mu F$ . Voltage THD: 2.34%                                               | 64 |
| 5.30 | The simulated three phase output voltages and currents for a MPC with a                                                  |    |
|      | nonlinear load of $R = 1000\Omega$ and $C = 3000\mu F$ . Voltage THD: 3.06%                                              | 65 |
| 5.31 | The simulated three phase output voltages and currents for the Improved                                                  |    |
|      | MPC with a nonlinear load of $R = 60\Omega$ and $C = 3000 \mu F$ . Voltage THD:                                          |    |
|      | 1.06%                                                                                                                    | 65 |
| 5.32 | The simulated three phase output voltages and currents for the Improved                                                  |    |
|      | MPC with a nonlinear load of $R = 1000\Omega$ and $C = 3000\mu F$ . Voltage                                              |    |
|      | THD: 0.75%                                                                                                               | 66 |
| 5.33 | The schematic diagram of the proposed HIL platform                                                                       | 69 |
| 5.34 | The Code Composer Studio (CCS) screen                                                                                    | 71 |
| 5.35 | The Host-PC program for a three phase inverter with LC filter using HIL                                                  |    |
|      | simulation                                                                                                               | 72 |
| 5.36 | The implementation of the proposed MPC on eZdsp F28335 Kit                                                               | 73 |
| 5.37 | The simulated three phase output voltages and currents for a MPC with                                                    |    |
|      | resistive load of 20- $\Omega$ load. Voltage THD: 0.57%                                                                  | 75 |
| 5.38 | The experimental three phase output voltages and currents for a MPC with                                                 |    |
|      | resistive load of 20- $\Omega$ load. Voltage THD: 0.7%                                                                   | 75 |
| 5.39 | The simulated three phase output voltages and currents for a MPC with                                                    |    |
|      | resistive load of 100- $\Omega$ load. Voltage THD: 1.44%                                                                 | 76 |
| 5.40 | The experimental three phase output voltages and currents for a MPC with                                                 |    |
|      | resistive load of $100-\Omega$ load. Voltage THD: $1.7\%$                                                                | 76 |
| 5.41 |                                                                                                                          |    |
|      | nonlinear load. Voltage THD: 1.9 %                                                                                       | 77 |
| 5.42 | The experimental three phase output voltages and currents for a MPC with                                                 |    |
|      | a nonlinear load. Voltage THD: 1.98 %                                                                                    | 78 |
| 5.43 |                                                                                                                          |    |
|      | THD: 3.07%                                                                                                               | 78 |
| 5.44 | The experimental filter current for a MPC with a nonlinear load. Current                                                 |    |
|      | THD: 3.07%                                                                                                               | 79 |
| 5.45 | The simulated three phase output voltages and currents for a MPC with                                                    |    |
|      | resistive load of $20-\Omega$ and according to the previous modifications. Voltage                                       |    |
|      | THD: 6%                                                                                                                  | 80 |

### **List of Symbols and Abbreviations**

MPC Model Predictive Control

THD Total Harmonic Distortion

IEEE 519 The IEEE standard for total harmonic voltage distortion

UPS The Uninterruptible Power Supply system

LRPC Long-Range Predictive Control

DSPC Direct Speed Control

GPC Generalized Predictive Control

S The switching states of the inverter

 $v_i$  The voltage vectors generated by the inverter

 $V_{dc}$  The dc-link voltage

i<sub>f</sub> The filter current in the vectorial form

v<sub>c</sub> The output voltage in the vectorial form

i<sub>o</sub> The output current in the vectorial form

L The filter inductance

C The filter capacitance

 $f_c$  The filter cut-off frequency

F(s) The Transfer function of the LC filter

 $T_s$  The sampling time

 $g_N$  The cost function for N step predictions

The cost function for a MPC with one step prediction N = 1

The cost function for the Improved MPC with two steps prediction N = 2

 $v_c^*$  The output voltage reference vector

 $v_{c\alpha}$  The real part of the predicted output voltage vector

 $v_{c\beta}$  The imaginary part of the predicted output voltage vector

 $v_{c\alpha}^*$  The real part of the reference output voltage vector

 $v_{\alpha\beta}^*$  The imaginary part of the reference output voltage vector