

A NEW PROCESS TECHNOLOGY FOR CAPTURING/CONVERTING CO₂ INTO LIQUID FUEL MEOH

By

Wafaa Mohamed Gomaa Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University in Partial
Fulfillment of the Requirements for the
Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

A NEW PROCESS TECHNOLOGY FOR CAPTURING/CONVERTING CO₂ INTO LIQUID FUEL **MEOH**

By Wafaa Mohamed Gomaa Mohamed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in CHEMICAL ENGINEERING

Under the Supervision of

Prof. Dr. Fatma Al-Zahraa Ashour	Dr. Mamdouh Ayad Gadalla
Professor of	Associate Professor
Chemical Engineering	Chemical Engineering
Faculty of Engineering, Cairo University	Faculty of Engineering, British University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

A NEW PROCESS TECHNOLOGY FOR CAPTURING/CONVERTING CO₂ INTO LIQUID FUEL MEOH

By Wafaa Mohamed Gomaa Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

Approved by the
Examining Committee

Prof. Dr. Fatma Al-Zahraa Ashour, Thesis Main Advisor

Prof. Dr. Hanan Hassan El-Sersy, Internal Examiner

Prof. Dr. Yasser Mohamed Mahmoud, External Examiner
The vice manager of the petroleum institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer's Name:** Wafaa Mohamed Gomaa

Date of Birth: 04 / 11 / 1983 **Nationality:** Egyptian

E-mail: A_w_hosny@yahoo.com

Phone: 01093839936

Address: Helwan, Cairo, Egypt

Registration Date:01 / 10 / 2011Awarding Date:..../..../2016Degree:Master of ScienceDepartment:Chemical Engineering

Supervisors:

Prof. Fatma Al-Zahraa Ashour Dr. Mamdouh Ayad Gadalla

Examiners:

Prof. Yasser Mohamed Mahmoud (External

examiner)

Prof. Hanan Hassan El-Sersy (Internal examiner)

Porf. Fatma Al-Zahraa Ashour(Thesis main

advisor)

Title of Thesis:

A New Process Technology for Capturing/Converting CO₂ into Liquid Fuel MEOH

Key Words:

Carbon Dioxide; Methanol; Simulation; Global Warming; Energy Integration. **Abstract:**

This work throws the light on the environmental problems caused by carbon dioxide accumulation in the atmosphere, together with the energy crisis and the rapid depletion of the fossil fuels. Also, this effort proposes the solution for both problems by presenting new approach for capturing/converting CO₂ into liquid fuel methanol.

The new approach seeks to reduce both, the fossil consumption and atmospheric CO₂ by recycling secondary CO₂ as a carbon source instead of using natural gas. Three models are suggested for converting carbon dioxide present in the large- scale flue gases streams emitted from electric power plants into liquid fuel methanol. Our work considers the CO₂ balance for the new technologies proposed taking into account all CO₂ flows from/to the environment.

Three new process technologies are developed and modeled for converting CO₂ streams into methanol. The total cost of equipment and utility for all processes are compared. The energy targets as well as the CO₂ emissions (balance) are determined. Heat integration is performed on the best selected process technology.

Acknowledgments

In the Name of Allah, the most merciful, the most compassionate all praise be to Allah, the Lord of the worlds; and prayers and peace be upon Mohamed His servant and messenger.

First and foremost, I must acknowledge my limitless thanks to Allah, the Ever-Magnificent; the Ever-Thankful, for His help and bless. I'm totally sure that this work would not have become truth, without His guidance.

I owe a deep debt of gratitude to some people, who worked hard with me from the beginning till the completion of the present research particularly my supervisors Prof. Fatma El-Zahraa Ashour and Dr.Mamdouh Ayad Gadalla who have been always generous during all phases of the research, and I highly appreciate their efforts.

I highly appreciate the efforts expended by Prof. Tarek Mostafa and Dr. Tamer Samir during the present research.

I would like to take this opportunity to say warm thanks to all my beloved friends, Rana Adel, Mai Hassan, Dalia Amer, and Dina Ahmed who have been so supportive along the way of doing my thesis. I also would like to express my wholehearted thanks to my father, Hosny Gomaa Mohamed, and my elder brother, Samy Gomaa for the generous support they provided me throughout my entire life.

I owe profound gratitude to my husband, Ahmed Khaled, whose constant encouragement, limitless giving and great sacrifice, helped me accomplish my degree. I would like to extend my sincere thanks to my father, mother, brothers, and sisters, thanks for all your support, encouragement, and great sacrifice. I really appreciate the trust you put in me and I promise that I will continue under your support.

Dedication

It is my genuine gratefulness and warmest regard that I dedicate this work to the soul of my lovely father, Hosny Gomaa. No words can ever express your kind heart, fatherly approach and support you provided me during my life. I was privileged and honored to be your daughter. I will never forget the support and encouragement you provided me with to go ahead with my studies; I promise I will always be at your expectations.

You showed me how a real leader can perform, no matter what, no matter how!! You educated me a lot, because of you I know a lot about the commitment, ethics, patient, struggle ...etc. I can NOT even list all what you taught me my lovely papa. You inspired me to work no matter the challenges were, in spite of all stresses and endeavors. I am very lucky to be your daughter. Thanks for being a great leader, advisor and above all kindest, lovely father. I wish you would always be available when I try to call you. I do wish you all the happiness in paradise.

Table of Contents

ACKNOW	LEDGMENTS	I
DEDICAT	IONI	I
TABLE OI	F CONTENTSII	I
LIST OF T	ABLESVI	I
LIST OF F	TIGURES IX	<
NOMENC	LATUREX	I
ABSTRAC	TI	I
CHAPTER	A 1 : INTRODUCTION	1
1.1.	THE WORK OBJECTIVE	2
1.2.	OVERVIEW OF THE THESIS	3
CHAPTER	2 : LITERATURE REVIEW	4
2.1.	INTRODUCTION	
2.2.	CARBON DIOXIDE	
2.2.1.	CHEMICAL AND PHYSICAL PROPERTIES OF CO2	4
2.2.2.	THE USES OF CARBON DIOXIDE	5
2.3.	CARBON DIOXIDE ROLE	7
2.3.1.	CARBON DIOXIDE ROLE IN GEOLOGY	7
2.3.2.	PLANT GROWTH (PHOTOSYNTHESIS)	7
2.4.	CARBON DIOXIDE IMPACT ON THE ENVIRONMENT	8
2.4.1.	CARBON DIOXIDE EMISSIONS & THE GREENHOUSI EFFECT	
2.5.	URBANIZATION, POPULATION AND CO ₂ EMISSIONS	1
2.6.	CARBON DIOXIDE MITIGATION OPTIONS	2
2.6.1.	MINIMUM EMISSIONS13	3
2.6.2.	ZERO EMISSIONS14	4
2.6.3.	CARBON DIOXIDE CONTROL14	4
2.6.3.1.	CARBON DIOXIDE CAPTURE & STORAGE14	4
2.6.3.2.	CARBON DIOXIDE SINKS1	5

2.6.3.3		
	ROUTES	15
2.7. 2.8.	CARBON DIOXIDE SOURCES	
2.8.1.	PHYSICAL ADSORPTION	
2.8.2.	CHEMICAL ABSORPTION	
2.8.2.1.	AMINE SELECTION	
2.8.3.	MEMBRANE SEPARATION	
2.9.	METHANOL PRODUCTION PROCESSES AND DEVELOPMENT	24
2.9.1.	METHANOL SYNTHESIS HISTORY	24
2.9.2.	SYNTHESIS GAS PRODUCTION	25
2.9.2.1.	SYNTHESIS GAS THROUGH STEAM REFORMING	
2.9.2.2.	SYNTHESIS GAS THROUGH PARTIAL OXIDATIO	N 26
2.9.2.3.	IMPROVED PARTIAL OXIDATION	27
2	2.9.2.4. STEAM REFORMING-PARTIAL OXIDAT	ION
COMBINA	ATION	28
2.9.2.5.	SYNTHESIS GAS PRODUCTION & DEVELOPMEN	T.28
	2.9.3. METHANOL SYNTHESIS OVER SUPPOR CATALYST	
2.9.4.	CATALYST SYSTEM IMPROVEMENTS	32
2.9.4.1.	REACTOR & CATALYST IMPROVEMENTS	32
	R 3 : NEW APPROACH FOR CO2 CAPTURING/CONVERT UID FUEL METHANOL	
3.1.	Introduction	
3.2.	GLOBAL ENERGY CHALLENGES IN THE 21 ST CENTURY	
3.3.	Hydrogen Production Processes	
3.3.1.	HYDROGEN PRODUCTION AS A MAIN PRODUCT	
3.3.2.	HYDROGEN PRODUCTION AS A SIDE PRODUCT	
3.4. 3.5.	MEOH USES	
3.6. 3.7.	THE CONVENTIONAL WAY FOR METHANOL PRODUCTION DESIGN OF A NEW APPROACH	42
3.7.1.	THE NEW APPROACH STRATEGY	46
3.7.2.	PROCESS DESCRIPTION	47

3.7.3.	PROCESS SIMULATION METHODOLOGY	48
3.7.3.1.	THE PROCESS DATA	49
3.7.3.2.	SELECTING THE UNIT SET	49
3.7.3.3.	DEFINING THE SIMULATION BASIS	49
3.7.3.4.	DEFINING FEED STREAMS	50
3.7.3.5.	INSTALLING AND DEFINING UNIT OPERATIONS	551
3.7.3.6.	REACTOR SIMULATION	52
	3.7.3.7. INSTALLING THE DOWNSTREAM U	UNIT
	OPERATION	S 53
3.7.3.8.	VALIDATION OF THE SIMULATION MODEL	54
3.7.3.9.	PROCESS INTEGRATION	54
3.7.4.	ECONOMIC ANALYSIS	60
3.7.5.	ENVIRONMENTAL STUDY	64
3.7.5.1.	CO ₂ EMISSIONS	64
3.7.5.2.	CARBON CREDITS	64
3.7.5.3.	CARBON DIOXIDE BALANCE	64
CHAPTER	4 : CASE STUDY	65
4.1. 4.2.	THE HYDROGEN SOURCE PROCESS DESCRIPTION	
	5 : RESULTS & DISCUSSION	
5.1.	THE 1 ST MODEL	
5.1.1.	METHANOL PRODUCTION & SEPARATION PROC	CESS 69
5.1.1.1.	FLOW SHEET DESCRIPTION	69
5.1.1.2.	DISTILLATION (METHANOL SEPARATION)	70
5.1.1.3.	COOLERS & HEATERS	71
5.1.2.	MASS & ENERGY BALANCES	71
5.1.3.	ECONOMIC ANALYSIS	72
5.1.4.	CO ₂ ABATEMENT	72
5.1.4.1.	CO ₂ EMISSIONS	72
5.1.4.2.	CARBON CREDITS	72
5.1.4.3.	CARBON DIOXIDE BALANCE	73
5.2	THE 2 ND MODEL	74

5.2.1.	METHANOL PRODUCTION & SEPARATION	PROCESS 74
5.2.2.	FLOW SHEET DESCRIPTION	
5.2.2.1.	DISTILLATION (METHANOL SEPARATION)75
5.2.2.2.	COOLERS & HEATERS	75
5.2.3.	MASS & ENERGY BALANCES	76
5.2.4.	ECONOMIC ANALYSIS	77
5.2.5.	CO ₂ ABATEMENT	77
5.2.5.1.	CO ₂ EMISSIONS	77
5.2.5.2.	CARBON CREDITS	77
5.2.5.3.	CARBON DIOXIDE BALANCE	77
5.3.	THE 3 RD MODEL	78
5.3.1.	METHANOL PRODUCTION & SEPARATION	PROCESS
		78
5.3.1.1.	FLOW SHEET DESCRIPTION	78
5.3.1.2.	CARBON DIOXIDE CAPTURE UNIT	79
5.3.1.3.	DISTILLATION (METHANOL SEPARATION	80
5.3.1.4.	COOLERS & HEATERS	80
5.3.2.	MASS & ENERGY BALANCES	81
5.3.3.	ECONOMIC ANALYSIS	82
5.3.4.	CO ₂ ABATEMENT	82
5.3.4.1.	CO ₂ EMISSIONS	82
5.3.4.2.	CARBON CREDITS	82
5.3.4.3.	CARBON DIOXIDE BALANCE	82
5.4.	DISCUSSION	83
СНА	PTER 6 : PINCH ANALYSIS FOR THE SELECTED	PROCESS
MODEL U	SING ASPEN ENERGY ANALYZER	85
6.1.	Methodology	
6.2.	DATA EXTRACTION FROM THE PROCESS	
6.3.	BASE CASE HEN ANALYSIS FOR RETROFIT	88
CHAPTER	7 : CONCLUSION	92
REFEREN	CES	93

List of Tables

Table 2.1: Physical and chemical properties of carbon dioxide	5
Table 2.2: Current status of carbon dioxide uses in different industrial	
applications	6
Table 2.3: The major carbon reservoirs of the Earth	7
Table 2.4: CO ₂ emissions growth and population by income group: (1975-1996	
(a sample of 93 country)	.12
Table 2.5: The relation between the fuel type and the H/C ratio	.12
Table 2.6: Order of magnitude estimates for the worldwide capacity of various	
sinks	.15
Table 3.1: Hydrogen production rate of different types of processes	.39
Table 3.2: Technology summary	.39
Table 3.3: The data of the flue gases feed stream	.50
Table 3.4: The data of the hydrogen gas feed stream	.51
Table 3.5: Column specifications data	
Table 3.6: The values for the activation energy (E) and Arrhenius constant (A)	.52
Table 3.7: The values of the kinetic model parameters	
Table 3.8: The specifications of the catalyst and reactor	.53
Table 3.9: Correction factor (F _p), for pressure vessels, columns, and reactors	.60
Table 3.10: Correction factor (F _m), for pressure vessels	.60
Table 3.11: Correction factors for column trays	.61
Table 3.12: Determination of the material factor, Fm	.62
Table 3.13: Correction factors for heat exchangers	
Table 3.14: Correction factors for Compressors.	.63
Table 3.15: Data necessary for calculating the carbon dioxide emissions	.64
Table 4.1: The data of the flue gases feed stream	
Table 4.2: The data of the hydrogen gas feed stream	
Table 5.1: The reactor feed data	
Table 5.2: The specifications of the distillation column	
Table 5.3: Heaters and coolers details	.71
Table 5.4: Overall material balance (CO ₂ emissions due to the energy	
consumption are not included)	
Table 5.5: The economic results of the first model	
Table 5.6: Data necessary for calculating the carbon dioxide emissions	
Table 5.7: CO ₂ balance	
Table 5.8: The properties of the reactor feed stream	
Table 5.9: The specifications of the distillation column	
Table 5.10: Heaters and coolers details	.76
Table 5.11: Overall material balance (CO ₂ emissions due to the energy	
consumption are not included)	
Table 5.12: The economic results of the second model	
Table 5.13: CO ₂ balance	
Table 5.14: The properties of the reactor feed stream	
Table 5.15: The specifications of the distillation column	.80

Table 5.16: Heaters and coolers details	81
Table 5.17: Overall material balance (CO ₂ emissions due to the energy	
consumption are not included)	81
Table 5.18: The economic results of the third model	82
Table 5.19: CO ₂ balance	83
Table 5.20: A detailed comparison between the three processes	84
Table 6.1: Data required to build Composite Curves	87
Table 6.2: Pinch analysis results	91

List of Figures

Fig. 1.1: Methanol to Gasoline	2
Fig. 2.1: The carbon dioxide utilization routes.	5
Fig. 2.2: Map illustrates the main carboniferous deposits of the world (redrawn	
from Arduini and Teruzzi, 1994).	7
Fig. 2.3: The steady increase in CO ₂ concentration in the atmosphere in recent	
years. Solid and open symbols indicate average and seasonal trends, respectively	y.
	8
Fig. 2.4: The origin of CO ₂ emissions.	9
Fig. 2.5: Variation of the temperature of the Earth during the last millennium. T	he
upper panel shows the trend during the past 140 years (IPCC data)	10
Fig. 2.6: Scenario of the CO ₂ emission until 2030	10
Fig. 2.7: Energy density of several different liquid and gaseous vectors	13
Fig. 2.8: Schematic diagram of possible CCS systems.	
Fig. 2.9: The scheme of global carbon dioxide recycle (scenario#1)	16
Fig. 2.10: Global GHG emissions (CO ₂) in year 2000 & the contribution of	
"cement industry"	18
Fig. 2.11: Overview of CO ₂ emission volumes of medium scale combustion	
installations [14]	18
Fig. 2.12: Capture of carbon dioxide.	
Fig. 2.13: Typical absorption based carbon dioxide capture unit.	
Fig. 2.14: MEA performance for a Coal Fired Power Plant.	
Fig. 2.15: DEA performance for a Coal Fired Power Plant.	
Fig. 2.16: MDEA performance for a Coal Fired Power Plant.	
Fig. 2.17: Block diagram of cold membrane process with energy integration	
Fig. 2.18: Production of synthesis gas through steam reforming	
Fig. 2.19: Synthesis gas production through partial oxidation.	
Fig. 2.20: Improved partial oxidation for synthesis gas production: (a) auto-	
thermal reformer; (b) catalytic partial oxidation; (c) oxygen permeable catalytic	
	27
Fig. 2.21: Combination of steam reforming & partial oxidation can comprise (a))
mass integration for: (i) improved synthesis gas quality and (ii) mass & heat	
integration; (b) for improved energy efficiency.	28
Fig. 3.1: Carbon dioxide conversion into fuel.	
Glucose	
Fig. 3.2: Two-stage fermentation for H ₂ production	
Fig. 3.3: Chlor-Alkali industry for H ₂ production as a side stream	
Fig. 3.4: Water electrolysis using solar energy.	
Fig. 3.5: Energetic efficiencies for different routes of MeOH production	
Fig. 3.6: The production cost for different routes of MeOH production	
Fig. 3.7: The conventional way for methanol production	
Fig. 3.8: Products from carbon dioxide hydrogenation.	
Fig. 3.9: The first suggested process.	
Fig. 3.10: The second suggested process.	
Fig. 3.11: The third suggested process	
Fig. 3.12: Process development algorithm.	
Fig. 3.13: An illustrative Composite Curve.	

Fig. 3.14: An illustrative Grand Composite Curve.	56
Fig. 3.15: Schematic process utility use	
Fig. 3.16: Composite Curve construction.	
Fig. 3.17: Minimize utility use	
Fig. 3.18: The Grand Composite Curve for multiple utilities targeting	59
Fig. 3.19: Cost of trays in plate towers, including (tray deck, bubble caps, rise	ers,
down comers, and structural steel parts)	61
-	63
Fig. 3.20: Determination of the compressor type	
Fig. 4.1: The first model	66
Fig. 4.2: The second model	67
Fig. 4.3: The 3 rd model	67
Fig. 5.1: The flow sheet for the 1st model	69
Fig. 5.2: The flow sheet for the 2nd model	74
Fig. 5.3: The flow sheet for the 3rd model	78
Fig. 5.4: The flow sheet for carbon dioxide capture unit	80
Fig. 5.5: The Grand Composite Curves of process one and two	84
Fig. 6.1: Alternative design for the base case two design	87
Fig. 6.2: Process flow diagram for the second model for Methanol production	189
	89
Fig. 6.3: Composite Curve.	
Fig. 6.4: Grand Composite Curve.	90
Fig. 6.5: Utility Composite Curve.	90

Nomenclature

A_i: Kinetic model constant ATR: Auto-Thermal Reformer B_i: Kinetic model constant CCS: CO₂ Capture & Storage

DEA: Di Ethanol Amine GDP: Gross Domestic Product

GHG: Green House Gases

GTCC: Gas Turbine Combined Cycle HEN: Heat Exchanger Networks ICI: Imperial Chemical Industries IEA: International Energy Agency

IGCC: Integrated Gasification Combined Cycle

IPCC: The Intergovernmental Panel on Climate Change

K_{eqi}: Thermodynamic equilibrium constant

k_i: Kinetic model constant

LTMS: Low Temperature Methanol Synthesis

MDEA: Methyl Di-Ethanol Amine

MEA: Mono Ethanol Amine

NG: Natural Gas

NHV: Net Heating Value, (kJ/kg) P_i: Partial pressure of component i

PRSV EOS: Peng-Robinson-Stryjek-Vera Equation of State

PSA: Pressure-Swing Adsorption

r_i: Rate of reaction in relation to component i

T: Temperature

TSA: Temperature-Swing Adsorption

 α : The ratio of the molar masses of carbon dioxide and carbon