

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المناد ١٠٠٠ الأفلام بعيدا عن الغبار ١٠٠٠ المؤية ورطوية نسبية من ٢٠٠٠؛ ٣ To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائليسق الاصلية تالفة

alai etas al ini

ENGINEERING AND ENVIRONMENTAL STUDIES ON AMMONIA EMITTED FROM POULTRY HOUSES

By

KHALED MOHAMED ABDEL-BARY

B. Sc. Agric. (Agric. Mechanization) - Cairo University, 1989 M. Sc. Agric (Agric. Engineering) - Cairo University, 1996

A THESIS

Submitted to the Graduate Division in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

IN

AGRICULTURAL ENGINEERING

Agricultural Engineering Department Faculty of Agriculture Cairo University

Cairo University Faculty of Agriculture Agricultural Engineering Department

ENGINEERING AND ENVIRONMENTAL STUDIES ON AMMONIA EMITTED FROM POULTRY HOUSES

Presented by

KHALED MOHAMED ABDEL-BARY

For the Degree of Doctor of Philosophy

Advisor's Committee

Prof. Dr. Mohamed Hashem Hatem Agricultural Engineering Department. Faculty of Agriculture. Cairo University. Giza, Egypt.

Prof. Dr. Naguib EL-Helaly Gohar Animal Production Department. Faculty of Agriculture. Cairo University. Cairo University President.

Giza, Egypt.

Prof. Dr. Abd El-Kader Ghaly Biological Engineering Department. Faculty of Engineering, Dalhousie University. Halifax, NS, Canada.

"APPROVAL SHEET"

ENGINEERING AND ENVIRONMENTAL STUDIES ON AMMONIA EMITTED FROM POULTRY HOUSES

Presented by

KHALED MOHAMED ABDEL-BARY

For the Degree of Doctor of Philosophy

This Thesis Has Been Approved By:

Examiner's Committee	Approved
Prof. Dr. Mohamed A. Sabbah Agricultural Engineering Department. Faculty of Agriculture. Alexandria University.	N.E. B.
Prof. Dr. Naguib E. Gohar Animal Production Department. Faculty of Agriculture. Cairo University. Cairo University President.	N.R. Bul
Prof. Dr. Samy M. Younis Agricultural Engineering Department. Faculty of Agriculture. Cairo University.	Sam.
Prof. Dr. Mohamed H. Hatem Agricultural Engineering Department. Faculty of Agriculture. Cairo University.	M. Haltry
Deposited in the Faculty Library Date: / / 2003	(Librarian)

In the name of God, Most Gracious, Most Merciful

"O my Lord! so order me that I may be grateful for Thy favours, which thou hast bestowed on me and on my parents, and that I may work the righteousness that will please Thee: And admit me, by Thy Grace, to the ranks of Thy righteous Servants."

An Nami (The Ants): (19).

To
My Beloved Mother

L
My Lovely Wife

Name of candidate: Khaled Mohamed Abdel-Bary Degree: Ph. D.

Title of Thesis: Engineering And Environmental Studies On Ammonia Emitted

From Poultry Houses.

Supervisors: Prof. Dr. Mohamed H. Hatem

Prof. Dr. Naguib E. Gohar Prof. Dr. Abd El-Kader Ghaly

Department: Agricultural Engineering

Branch: Agricultural Structure & Environmental Control

Approval: October, 2003

ABSTRACT

The main purpose of this research work is to investigate, study and analyze aerial ammonia volatilization inside poultry houses and ammonia emission outside houses escape to the surrounding environment. Furthermore, studying the potential of using relatively new air pollution control technology, (biofiltration system), as one of biological treatment techniques that are used for the amelioration of odorous gases compounds emitted from poultry houses (concentrating on ammonia gas).

In present work, poultry houses field data were collected and measured for two commercial laying hens breeds, $COBB^{TM}500$ and $ROSS^{TM}308$, at two different ages (41 and 26 weeks) throughout four periods of continuous three days. Ammonia concentrations verses different environmental factors such as temperature, relative humidity and air velocity was measured. Ammonia volatilized inside the house and emitted or escapes to the outside environment from the house and comparison of ammonia emission rates between different breeds and ages were performed also. Field results showed that ammonia concentrations and ammonia emission rates vary with location, the size and type of poultry housing, temperature, relative humidity, air velocity, time of day, and bird ages. So as to study the potential of using biofilter for reduction of ammonia emitted from poultry houses, two directions were staged. Nitrification process, firstly, was performed by soil perfusion method. Nitrification is the biological process in which ammonium (NH₄⁺) is converted to nitrate (NO₃), with nitrite (NO₂) being an intermediate step in the oxidation process. Nitrification experiment results had identical tendency at the first periods of experiments, hence the results showed disagreement with the process natural behavior curve. This was referring to increasing loading rate (inlet concentration) and presence of organic material (compost) in the soil column. Organic material contained many types of microorganisms and increasing loading rate that reflected in the rising of competition for space and oxygen among heterotrophic organisms and autotrophic one (Nitrosomonas and Nitrobacter, that are primarily responsible for ammonia conversion) and affected the efficiency of the process to complete the two-step bacterial conversion of ammonia to nitrate.

Secondly, ammonia concentration gradient along the biofilter medium height is studied and modeled by using proposed mathematical model describing ammonia concentration gradient and biomass film along the biofilter column length. Recent model differed from earlier models in some aspects and was similar to them in the others. The flow through the biofilter has been modeled as a one-dimensional flow and it has been done through an ideal plug flow reactor (PFR) concept. The differential equation including the terms of diffusion, convection and kinetic reaction are developed also, finite element method is used to obtain the solutions of theses differential equations. Replacing its proposed parameters by that published in the previous literatures to recent model carries out the validation of proposed model. Direct agreement between proposed model and previous models could be easily noticed in the time that un-complete agreement with another different models is clearly illustrated. Disagreement with recent model referred different gases; different assumption, concepts and approaches used in previously research works.

m. Hatery

AKNOWLEDGEMENTS

The author is deeply grateful to "Allah" for helping him to complete this work.

The author wishes to express his sincere thanks and appreciation to Prof. Dr. *Mohamed Hashem Hatem*, Professor of Environmental Engineering, Agricultural Engineering Department, Faculty of Agriculture, Cairo University for his sincere supervision, encouragement, guidance and constructive criticism through this work was undertaken.

The author wishes to express his sincere thanks and appreciation to Prof. Dr. Naguib EL-Helaly Gohar, Professor of Animal Production, Animal Production Department, Faculty of Agriculture, Cairo University and President of Cairo University for his sincere supervision, encouragement, guidance and constant scientific advises through out this work.

The author wishes to express his deep and sincere thanks and appreciation to his Canadian supervisor Prof. Dr. *Abd El-Kader Ghaly*, Professor of Biological Engineering, Biological Engineering Department. Faculty of Engineering, Dalhousie University, Halifax, Nova Scotia, Canada for his invaluable guidance, expert advice and continued support through this work. His timely assistance, generous hospitality, patience in guiding the research work and reviewing this thesis are greatly appreciated.

Deep gratitude is due to Dr. *Mohamed Abdel Hameed El Shafie*, Head Manger of Misr Arab for Poultry Company (MAP) and Rabie Poultry Company for his continuous sincere support, and constant scientific advises through out this work, and special thanks to all staff members of two companies.

Also, the author wishes to express his deepest thanks to all who have helped in facilitation, the execution of this work, especially all staff members of the Agricultural Engineering Department, Faculty of Agriculture, and Cairo University.

Last, but not least, the author is particularly grateful to his beloved wife for her understanding, patience and support throughout research work periods.

TABLE OF CONTENTS

IST ()F TABI	ES	ix
IST C	F FIGU	RES	. xii
IST C)F ABBF	REVIATIONS AND SYMBOLS	. xx
CKN	OWLED	GEMENT	xxvii
BSTF	RACT		xxviii
ONTI	RIBUTIO	ON TO KNOWELAGE	xxix
IN	NTRODU	JCTION	1
0	BJECTI	√ES	11
S	COPE		12
LI	TERAT	JRE REVIEW	14
4.	I Air	Pollution	14
4.2	2 Odo	r	15
4.	3 Mair	Source Of Odor Compounds Emission	18
	4.3.1	Building and Holding Facilities	18
	4.3.2	Manure Storage and Treatment Systems	18
	4.3.3	Land Application of Manure	19
	4.3.4	Carcass Disposal	20
4.4	Gase	ous Compound Produced From Manure Animal Buildings	21
	4.4.1	Methane (CH ₄)	21
	4.4.2	Carbon Dioxide (CO ₂)	23
	4.4.3	Ammonia (NH ₃)	24
	4.4.4	Hydrogen Sulfide (H ₂ S)	30
	4.4.5	Carbon Monoxide (CO)	32
	4.4.6	Nitrogen Oxides (NO _x)	33
4.5	Poult	ry Waste Management	34
16	Doult	ny Waste Characteristics	37 .

	4.6.1	Physical Characteristics	38		
	4.6.2	Thermal Characteristics	42		
	4.6.3	Chemical Characteristics	42		
	4.6.4	Microbiological Characteristics	45		
	4.6.5	Biological Characteristics	45		
4.7	The Ni	itrogen Cycle	47		
4.8	Factors	s Affecting Ammonia Emission	57		
	4.8.1	Indoor Air Temperature	57		
	4.8.2	Indoor Relative Humidity	59		
	4.8.3	Moisture Content of Litter	60		
	4.8.4	Acidity (pH)	61		
	4.8.5	Ventilation System	62		
	4.8.6	Keeping System and Stock Density	65		
	4.8.7	Nutrient and Animal Age	66		
	4.8.8	Waste Characteristics and Management	68		
	4.8.9	Season of Year and Time of Day	70		
	4.8.10	Microbial Activity	71		
4.9	Odor fr	rom Livestock and Poultry Facilities	72		
	4.9.1	Odor Characteristics			
	4.9.2	Odor Emission From Livestock Building	76		
4.10	Ammonia Measuring Technique				
	4.10.1	Air Sampling Methods	77		
		4.10.1.1 Nessler reagent method	78		
		4.10.1.2 Indophenol method	79		
		4.10.1.3 Nitrite method	80		
		4.10.1.4 UV spectrophotometry method	80		
		4.10.1.5 One-step method for ammonia	83		

	4.10.2	Direct Mea	ect Measurements			
		4.10.2.1	Olfactory n	nethods	83	
		4.10.2.2	Chemical n	nethods	86	
		4.10.2.3	Instrument	methods	89	
	4.10.3	Closed Cha	amber Syster	m	91	
4.11	Ammoi	nia Reductio	n Technolog	y	92	
	4.11.1	Flushing	• • • • • • • • • • • • • • • • • • • •		92	
	4.11.2	Aeration	·····		93	
	4.11.3	Acidification	on		97	
	4.11.4	Quick Rem	noval of Urin	e Faeces	100	
	4.11.5	Using Covering and Bedding Materials				
	4.11.6	Using Cher	mical Amend	lments	103	
	4.11.7	Using Feed	l/Drinking W	Vater Additives	104	
	4.11.8	Using Defe	erent Floor T	ypes	105	
4.12	Biofiltra	ation			106	
	4.12.1	Historical I	Background.	•••••••••••	106	
	4.12.2	Theory of I	Biofilter	••••••	109	
	4.12.3	Types of B	iofilters		114	
		4.12.3.1	Air purifica	tion biofilters	114	
			4.12.3.1.1	Open soil bed biofilters	115	
			4.12.3.1.2	Open single-bed biofilters	117	
			4.12.3.1.3	Engineered multiple open-bed biofilters	122	
		4.12.3.2	Wastewater	treatment biofilters	126	
			4.12.3.2.1	Submerged biofilters	126	
			4.12.3.2.2	Trickling biofilters	129	
			4.12.3.2.3	m n a .	132	

		4.12.3.2.4	Pressurized-l	bead biofilters	134
		4.12.3.2.5	Fluidized-be	d biofilters	136
		4.12.3.2.6	Mixed bed r	eactors	141
4.12.4	Designing	g Parameters o	of Biofilters		143
	4.12.4.1	Sizing of b	iofilter		143
		4.12.4.1.1		packing material and	143
		4.12.4.1.2	Biofilter med	ia	146
			4.12.4.1.2.1	Type of biofilter media	146
			4.12.4.1.2.2	Selecting of biofilter medium	152
	4.12.4.2	Engineering	g the physical b	iofilter system	157
		4.12.4.2.1		mechanical air handling	157
		4.12.4.2.2	Air pretreatn	nent systems	159
		4.12.4.2.3		eactor vessel and internal	164
		4.12.4.2.4	Process contro	ol systems	165
4.12.5	Controllir	ng and Operat	ing Parameters	of Biofilters	168
	4.12.5.1	Retention ti	me		168
	4.12.5.2	Moisture co	ntent		171
	4.12.5.3	Temperature	e		173
	4.12.5.4	pH and alka	linity		174
	4.12.5.5	Pressure dro	р		176
	4.12.5.6	Nutrients		••••••	179
	4.12.5.7	Inlet concen	tration	••••••	181
4.12.6	Removal Efficiency and Elimination Capacity				183
4.12.7	Installation, Maintenance and Operating Costs				

	4.12.8	Biofilter microbiology					. 193	
		4.12.8.1	Microbia	populati	ons in bi	ofilters		196
		4.12.8.2	Nitrifying	, bacteria		• • • • • • • • • • • • • • • • • • • •		197
		4.12.8.3	Microbial	growth.				. 201
		4.12.8.4	Microbial	decay	•••••			211
		4.12.8.5	Carrying	capacity.	• • • • • • • • • • • • •			211
		4.12.8.6	Biomass o	clogging.	•••••			212
	4.12.9	Biofilter t	hėoretical n	nodels				. 214
		4.12.9.1	Biofilter e	earlier mo	dels	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	. 214
		4.12.9.2	Lumped n	nodels	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	219
		4.12.9.3	Uniform b	oiofilm m	odels			220
		4.12.9.4	Tow phas	e equilib	ium moc	lels		223
		4.12.9.5	Two phas	e biologi	cal kineti	cs models		229
MA?	ГНЕМАТ	TICAL MOI	DEL DEVE	LOPMEN	۱T			233
5.1	Plug Fl	ow Rector				• • • • • • • • • • • • • • • • • • • •		. 234
5.2	Mass B	alance Over	alance Over The Gas Phase					
5.3	Mass B	Salance Over The Biofilm						241
5.4	Reactio	n Kinetics .		•••••				244
	5.4.1		oxidizer	-	•	•		
	5.4.2		oxidizer					i., 246
5.5	Relation	n Between I	nlet and Ou	tlet Gas I	hase Co	ncentrations	3	249
5.6	Biofilter Design Parameters				. 250			
	5.6.1	Empty bed	residence t	ime (EBI	ξΤ)			. 250
	5.6.2	Surface rates	and		volum	etric	loadir	ng 251
	5.6.3	The mass 1	oading rate	(surface	or volum	etric)		252