Cairo University Faculty of Veterinary Medicine Department of Microbiology

Genotypic characterization and toxigenic potential of *Bacillus* species isolated from different sources

A Thesis Presented By Hend Mohamed Yehia Yousef

(B.V.Sc., Cairo University, 2007)

For The Degree of
Master of Veterinary Medical Sciences
(Bacteriology, Immunology and Mycology)

Under The Supervision Of

Prof. Dr. Kamelia Mahmoud Osman

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University, Egypt.

Prof.Dr. Nehal Sami Ahmed

Professor of plant pathology National Research Center - Dokki

Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Name: Hend Mohamed Yehia Yousef

Nationality: Egyptian **Birth date:** 29/9/1984

Degree: Master of Veterinary Medical Sciences

Specialization: Microbiology (Bacteriology, Immunology and Mycology)

Title of Thesis: Genotypic characterization and toxigenic potential of Bacillus

species isolated from different sources

Supervisors:

Prof. Dr. Kamelia Mahmoud Osman

Professor of Microbiology, Faculty of Veterinary Medicine, Cairo

University

Prof. Dr. Nehal Sami Ahmed

Professor of Plant Pathology, National Research Central, Dokki, Giza

Abstract

In this study a total number of 225 retail meat and offal samples (156 chicken meat and offal samples and 99 beef meat samples) were collected from tow governorates (Giza and Qalubia) for isolation of *Bacillus* spp samples were obtained either from butchers shops (chicken and local beef meat) and supermarkets (frozen imported meat) for one year. The meat samples consisted of 156 chicken samples (65 breast meat, 48 thigh meat, 29 livers and 14 hearts), 59 local beef meat (44 meat cut and 15 minced meats) and 40 imported frozen beef meat. Bacillus spp isolates were 48.6% from total samples (124 isolates), divided into 66 (42.3%) from chicken samples (26 from breast, 24 from thigh, 10 from liver and 6 from heart) and 58 (58.6%) from beef meat samples (23 from local meat cut ,7 from local minced meat and 28 from imported frozen meat cuts). Results of virulence assay showed that the majority of Bacillus isolates showed slime formation (63.7%) and biofilm formation (84.7%). The prevalence of the hemolytic activity of *Bacillus* spp isolates showed the total βhemolysis activity of *Bacillus* spp reached 77.4% while the α - hemolysis activity and γ hemolysis reached 16.1% and 6.5% respectively. Bacillus spp isolates showed the total Lecithinase activity of *Bacillus* spp reached 53.2%. The prevalence of production of αamylase Bacillus spp isolates showed the total hydrolysis 87.1% and all isolates of Bacillus cereus having ability to starch hydrolysis except one isolates with 96.3%. The cytotoxic activity of 94 Bacillus spp isolates supernatant fluid indicated 100% cytopathic effect on the Vero cell line with different degree 46.8%, 41.5% and 11.7% for (+++), (++) and (+) respectively. The highest percentage of resistance against examined antimicrobial agents was recorded in penicillin 100%, resistance against Cephalothin, Oxacillin, Sulfamethazole /Trimethoprim, and Nalidixic acid were 95.2% 94.4%, 77.4%, and 62.9% respectively. for genotypic detection of different distribution of virulence factors gene of isolated Bacillus spp revealed that the amplification for CytK, nheA, nheB, nheC, plc, entFM, hblA, hblC and were 58.9%, 33.9%, 13%, 25%,40.3%, 35.5%, 45.2%, 29.8% and 20% respectively. Each isolates regardless of their origin harbored at least one of the enterotoxin. genes indicating their pathogenic nature, which must be considered as serious health hazard.

Dedication To

Mym	other
• • • • •	. My father
•••	My sister
•	My brother
	Dr. Mahmoud Sharawy

ACKNOWLEDGMENT

First, my deepest prayerful thanks to our merciful **ALLAH** who alone made this achievement, and ask him to accept my effort.

I wish to express my sincere gratitude and sincere thanks to **Professor Dr. Kamelia Mahmoud Osman.** Professor of Microbiology, Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, for her microbiological expertise, steadfast guidance, constant accessibility, unfailing interest, stimulating supervision and constructive criticism are greatly appreciated and were the guidelines which made the completion of this work possible. Thank you for the guidance on academic writing skills and giving me the chance to explore in details the demanding molecular techniques that I will need for a strong scientific career.

My sincere thanks and gratitude to **Professor Dr. Nehal Sami Ahmed** Professor of Plant Pathology Department, National Research Center, Dokki, Giza for her close supervision and her kind guidance during this work. She encouraged me and gave me ideal responses for my asking about the work.

I am grateful to **Dr. Ahmed Orabi**, Assistant Lecturer of Microbiology, Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, for his valuable advice and guidance throughout the course of the thesis.

It is great pleasure to record my thanks to **all the staff** members of the Microbiology Department for valuable help and advices during the work.

LIST OFCONTENTS

NUMBER	CONTENT	PAGE
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	6
3	MATERIALS AND METHODS	46
4	RESULTS	63
5	DISCUSSION	150
6	CONCLUSION	166
7	SUMMARY	168
8	REFERENCES	173
9	ARABIC SUMMARY	199

Number	Title	Page
1	Important Taxonomic Relocations in the Genus <i>Bacillus</i> from 1986 to 2009.	10
2	Origin of isolates of <i>Bacillus</i> species.	12
3	Bacillus species antibiotic producers.	17
4	Toxins produced by B. cereus.	27
5	Prevalence of <i>B. cereus</i> in raw and processed food products.	36
6	Characteristic of two types of <i>B.cereus</i> food born disease.	37
7	Numbers and distribution of the examined samples.	46
8	Antimicrobial sensitivity discs.	49
9	Oligonucleotide primers sequences and size of the PCR-targeted products <i>PCR</i> for <i>Bacillus</i> spp. (Toxin Genes)	52
10	Biochemical tests and characteristic feature for the identification of <i>Bacillus</i> species.	57
11	Zone diameter interpretation standards for Bacillus species.	60
12	Prevalence of Bacillus spp. isolates from different sources.	63
13	Results of biochemical identification of the suspected <i>Bacillus</i> spp isolates recovered from chicken meat, offal and beef meat samples.	64
14	Classification of the isolated <i>Bacillus</i> spp. recovered from chicken meat, offal and beef meat samples by biochemical tests.	66
15	Prevalence of <i>Bacillus</i> spp isolated from chicken meats and offal sample.	67

16	Prevalence of 26 isolates of <i>Bacillus</i> spp isolated from 65 chicken breast meats samples.	68
17	Prevalence of 24 isolates of <i>Bacillus</i> spp isolated from 48 samples of chicken thigh meat samples.	69
18	Prevalence of 10 isolates of <i>Bacillus</i> spp isolated from 29 samples of chicken liver samples.	70
19	Prevalence of 6 isolates of <i>Bacillus</i> spp isolated from 14 samples of chicken heart samples.	71
20	Prevalence of 58 isolates of <i>Bacillus</i> spp isolated from 99 samples of beef meat samples.	72
21	The Prevalence of 23 isolates of <i>Bacillus spp</i> isolated from 44 local beef meat samples.	73
22	The prevalence of <i>Bacillus</i> spp isolated from 7 isolates of local minced beef meat.	74
23	Prevalence of 28 isolates of <i>Bacillus</i> spp isolated from 40 imported frozen beef meat samples.	75
24	Slime production of <i>Bacillus</i> spp isolated from chicken meat and offal by Congo red agar method (CRA).	77
25	Slime production of <i>Bacillus</i> spp isolated from beef meat by Congo red agar method (CRA).	79
26	Slime production of <i>Bacillus</i> spp isolated from chicken meat, offal and beef meat by Congo red agar method (CRA).	81
27	Detection of Biofilm producion by <i>Bacillus</i> spp isolated from chicken meat and chicken offal samples for the adherence to abiotic surface by using tube adherence test "Christensen's tube method".	84

28	Biofilm producion by <i>Bacillus</i> spp isolated from beef meat samples by using tube adherence test "Christensen's tube method".	86
29	Collective table for detection of biofilm producion by <i>Bacillus</i> spp isolated from chicken meat, offal and beef meat samples by using tube adherence test "Christensen's tube method".	87
30	Results of haemolytic activity of <i>Bacillus</i> spp. isolated from chicken meat and chicken offal samples.	90
31	Result of haemolytic activity of <i>Bacillus</i> spp isolated from beef meat samples.	92
32	Collective result of haemolytic activity of <i>Bacillus</i> spp isolated from chicken meat, offal and beef meat samples.	93
33	Detection of Lecithinase production by <i>Bacillus</i> spp isolated from chicken meat and chicken offal samples.	96
34	Detection of Lecithinase production by <i>Bacillus</i> spp isolated from local beef meat and frozen beef meat samples.	97
35	Collective table for detection of Lecithinase production by <i>Bacillus</i> spp isolated from chicken meat, offal and beef meat samples.	98
36	Detection of extracellular enzyme (α- amylase) produced by Bacillus spp by starch hydrolyzes method isolated from chicken meat and chicken offal samples.	101
37	Detection of extracellular enzyme (α - amylase) produced by Bacillus spp by starch hydrolyzes method isolated from beef meat samples.	102
38	Collective table for detection of extracellular enzyme (α -amylase) of bacillus sppby starch hydrolyzes method isolated from chicken meat, offal and beef meat samples.	103
39	Detection of motile Bacillus spp isolated from chicken meat and chicken offal samples.	105

40	Detection of motile <i>Bacillus</i> spp isolated from beef meat samples.	106
41	Collective table for detection of motile <i>Bacillus</i> spp from chicken meat, offal and beef meat samples.	107
42	Enterotoxin production by <i>Bacillus</i> spp assay isolated from chicken meat and chicken offal by using Vero cell cytotoxicity.	110
43	Enterotoxin production by <i>Bacillus</i> spp isolated from beef meat samples by using Vero cell cytotoxicity assay.	112
44	Recorded collective the cytotoxic activity of <i>Bacillus</i> spp culture supernatant fluid recovered from chicken meat, offal and beef meat samples.	113
45	The results of antimicrobial disk diffusion test of <i>B. cereus</i> , <i>B. thuringiensis</i> and <i>B. mycoides</i> isolates of <i>Bacillus cereus</i> group isolated from chicken meat and chicken offal.	116
46	The results of antimicrobial disk diffusion test of <i>B. licheniformis</i> and <i>B. pumilus</i> isolates of <i>Bacillus subtilis</i> group and <i>B.brevis</i> isolates from <i>Bervibacillus</i> isolated from chicken meat and chicken offal.	118
47	The results of antimicrobial disk diffusion test of <i>B. coagulans</i> , <i>B. megaterium</i> and <i>B. sphaericus</i> isolates of other <i>Bacillus</i> spp group isolated from chicken meat and chicken offal.	120
48	The results of antimicrobial disk diffusion test of <i>B. cereus</i> , <i>B. thuringiensis</i> and <i>B. mycoides</i> isolates of <i>Bacillus cereus</i> group isolated from local beef meat samples.	122
49	The results of the antimicrobial disk diffusion test of <i>B</i> .licheniformis and <i>B. pumilus</i> from <i>Bacillus subtilis</i> group and <i>B.coagulans</i> from Other <i>Bacillus</i> spp group isolated from local beef meat.	124

50	The results of antimicrobial disk diffusion test of <i>B.cereus</i> , <i>B. thuringiensis</i> and <i>B. mycoides</i> isolates of <i>Bacillus cereus</i> group isolated from frozen beef meat samples.	126
51	The results of antimicrobial disk diffusion test of <i>B.alvei and B.licheniformis</i> isolates of <i>Paenibacillus</i> and <i>Bacillus subtilis</i> group isolated from frozen beef meat samples.	128
52	The results of antimicrobial disk diffusion test of <i>B. coagulans</i> , <i>B. sphaericus and B. stearothermophilus</i> isolates of other <i>Bacillus</i> spp group isolated from frozen beef meat samples.	130
53	Prevalence of antimicrobial resistance through the isolated species of <i>Bacillus</i> spp. recovered from chicken meat, offal and beef meat samples.	133
54	Prevalence of antimicrobial intermediate resistance through the isolated species of <i>Bacillus</i> spp. recovered from chicken meat, offal and beef meat samples.	136
55	Prevalence of antimicrobial sensitivity through the isolated species of <i>Bacillus</i> spp. recovered from chicken meat, offal and beef meat samples.	139
56	Result of multiplex PCR for amplification of 881bp, 405bp, 750bp and 620bp for <i>CytK</i> (cytotoxin K), <i>nheA</i> (non hemolytic enterotoxin A), <i>nheB</i> (non hemolytic enterotoxin B) and <i>nheC</i> (non hemolytic enterotoxin C) performed with its specific primer.	140
57	Result of multiplex PCR for amplification of 727bp, 609bp, 265bp, 641bp and 987bp for, <i>plc</i> (phosphlipase C), <i>entFM</i> (enterotoxin FM), <i>hblA</i> (hemolysin blA) <i>hblC</i> (hemolysin bl C) and <i>hblD</i> (hemolysin bl D) performed with its specific primer a representative <i>Bacillus</i> species.	142

58	Collective result of non hemolytic enterotoxin of <i>Bacillus</i> spp isolated from chicken meat, offal and beef meat samples.	145
59	Collective result of hemolysin bl of <i>Bacillus</i> spp isolated from chicken meat, offal and beef meat samples.	147
60	Collective result of <i>CytK</i> (cytotoxin K), <i>entFM</i> (enterotoxin FM) and <i>plc</i> (phosphlipase C) of <i>Bacillus</i> spp isolated from chicken meat, offal and beef meat samples.	149
61	Egyptian imports of meat by destination January to June 2014.	152

LIST OF FIGURES

Number	Title	Page
1	Gram positive Bacillus spp rod shape and endospore forming.	7
2	Unrooted neighbor-joining phylogenetic tree of <i>Bacillus</i> species based on 16S rRNA gene sequences. Alignment of sequences was performed using Clustalx, Bioedit and Treecon. Bootstrap values above 70% are shown (based on 1000 replications) at the branch points. Sequence accession numbers for each strain are given in parentheses.	11
3	Surface of a <i>Bacillus</i> Transmission E.M. C=Capsule; S=S layer; P=Peptidoglycan.	13
4	Encapsulated <i>Bacillus</i> spp. stained using Maneval's capsule staining method. Note that the capsule is seen as a clear halo around the rodshaped bacterium.	14
5	The role of the flagellar regulon in bacterial pathogenesis is multifactorial.	15
6	Flagellar stains (Leifson's Method) of various species of <i>Bacilli</i> from CDC.	15
7	The discontinuous hemolysis of <i>B. cereus</i> in HBL blood agar plate.	19
8	Schematic representation extracellular PlcR – controlled virulence factor.	25
9	Model of the role and expression of <i>hlyII</i> during infection. HlyII is then released into the environment and induces macrophage and erythrocyte lysis. The dead cells release their intracellular content, providing access to metabolites that are essential for bacterial growth.	26

LIST OF FIGURES

10	Diagrammatic representation of cyclic steps involved in the	
	formation of an active biofilm starting with the initial attachment and establishment followed by maturation and, finally, detachment of	30
	cells.	
11	Diagrammatic representation of spore formation in biofilm.	31
12	Mechanisms of antibiotic resistance in biofilms.	32
13	Mode of antibiotic action.	34
14	Bacillus colony on Mannitol Egg Yolk Polymyxin agar medium.	65
15	Acid from glucose without gas production.	65
16	Result of Congo red agar medium.	82
17	Results of Christensen's tube (CT) method.	88
18	Result of haemolytic activity.	94
19	Result of Lecithinase production test.	99
20	Result of starch hydrolysis.	104
21	Motility by using stab line inoculation.	108
22	Cytopatheic effect on the Vero cell.	114
	Agarose gel electrophoresis using Multiplex PCR with amplification	
23	of 881bp, 405bp 750bp and 620bp fragment for CytK, nheA, nheB	141
	and <i>nheC</i> gene performed with its specific primer.	
	Agarose gel electrophoresis using Multiplex PCR with amplification	
24	of 727bp, 609bp, 265bp, 641bp and 987bp for plc, entFM, hblA,	143
	hblC and hblD performed with its specific primer.	
25	Number of food borne disease outbreaks caused by B. cereus United	153
25	States, 1998– 2008.	100

LIST OF ABBREVIATIONS

AHLs	Acyl-homoserine lactones
AMPs	Antimicrobial peptides
API	Analytical profile index
ATP	Adenosine triphosphate
BceT	Enterotoxin-T gene
C	Capsule
CAN	Columbia agar with nalidixic acid and colistin
CDC	Cholesterol-dependent cytolysin
CerAB	Cereolysin AB
ces	Emetic toxin gene
CFU	Colony forming unit
CLO	Cereolysin O
CLSM	Confocal laser scanning microscopy
CRA	Congo red agar method
CTM	Christensen's tube method
cytK	Cytotoxin K gene
CytK 1	Cytotoxin K
CytK 2	Cytotoxin K
ent FM	Enterotoxin FM
Epr	Extracellular protease
EPS	Exopolymeric substances
Fnr	regulatory gene for fumarate and nitrate reduction
hblA	Hemolysin BL A gene
hblC	Hemolysin BL C gene
hblD	Hemolysin BL D gene
hlyII	Haemolysin II
hlyII	Haemolysin II gene
HlyIII	Haemolysin III
HlyIII	Haemolysin III gene
hlyIIR	Haemolysin II regulators
m-DAP	meso-diaminopimelic acid
nheA	Non hemolytic enterotoxin A
nheB	Non hemolytic enterotoxin B gene