

Faculty of Women for Arts, Science and Education Ain Shams University

USE OF SOME INDUSTRIAL WASTE PRODUCTS FOR THE PRODUCTION OF LOW COST CEMENT

A Thesis

submitted to the Chemistry Department,
Women's Faculty, Ain Shams University.
In partial Fulfillment of the Requirements for
The Degree of M.Sc. in Inorganic and Analytical Chemistry

Peresented by

Nourhan Nabil Kassem Soliman

(B.Sc.2013)

Supervised by

Prof. Dr. Essam Abd El-Aziz Kishar

professor of Inorganic Chemistry
Women's Faculty,
Ain Shams University, Cairo-Egypt

Ass. Prof. Dr/ Doaa Abd El-Monem Ahmed

Assistant prof of Inorganic Chemistry Women's Faculty, Ain Shams University, Cairo-Egypt

(2017)

Faculty of Women for Arts, Science and Education Ain Shams University

USE OF SOME INDUSTRIAL WASTE PRODUCTS FOR THE PRODUCTION OF LOW COST CEMENT

Peresented by Nourhan Nabil Kassem Soliman (B.Sc.2013)

Supervised by

Prof. Dr. Essam Abd El-Aziz Kishar professor of Inorganic Chemistry

Women's Faculty,

Ain Shams University, Cairo-Egypt

Ass. Prof. Dr/ Doaa Abd El-Monem Ahmed Assistant prof of Inorganic Chemistry Women's Faculty, Ain Shams University, Cairo-Egypt

Faculty of Women for Arts, Science and Education Ain Shams University

Student name: Nourhan Nabil Kassem Soliman

Thesis title :" Use of Some Industrial Waste Products for The Production of Low Cost Cement"

Degree : M.Sc. Degree in Inorganic and Analytical Chemistry.

Approved by

Prof. Dr. Essam Abd El-Aziz Kishar: professor of Inorganic Chemistry, women faculty, Ain shams university. Ass. Prof. Dr/ Doaa Abd El-Monem Ahmed:

Assistant prof of Inorganic Chemistry, women faculty, Ain shams university .

Head of Chemistry Department

Faculty of Women for Arts,

Science and Education

Ain Shams University

Cairo, Egypt.

Student Name : Nourhan Nabil Kassem Soliman

Scientific Degree: B.Sc.(Chemistry)

Department: Chemistry

Name of Faculty: Faculty of Women

University : Ain Shams University

B.Sc. Graduation Date: 2013

NOTE

Beside the work done in this thesis, the candidate has attended post-graduate courses for one year in inorganic and analytical chemistry including the following topics:

- Instrumental Analysis	(CHEM 601)
-Cement	(CHEM 632)
-Radiation Chemistry	(CHEM 632)
-Writing scientific research	(CHEM610)
-Spectroscopy	(CHEM 630)
-Ethics of Scientific Research	(CHEM 620)
-Structural inorganic chemistry	(CHEM 636)
-Advanced reaction mechanism	(CHEM 634)

She has successfully passed written examinations in the above mentioned topics.

Head of Chemistry Department

ACKNOWLEDGEMENT

First and foremost, praises and thanks to **ALLAH**, the Almighty, for his showers of blessings throughout my research work to complete the research successfully.

I would like to express my deep and sincere gratitude to my research supervisor **Prof. Dr. Essam A. Kishar**, Professor of Inorganic Chemistry, Faculty of Women for Arts, Science, and Education, Ain Shams University for giving me the opportunity to do research and providing invaluable guidance throughout this research. His dynamism, vision, sincerity and motivation have deeply inspired me. He has taught me the methodology to carry out the research and to present the research works as clearly as possible.

Special thanks and appreciation are extended to **Dr. Doaa A. Ahmed** Assistant. prof .of Inorganic Chemistry Faculty of Women for Arts, Science, and Education Ain Shams University. For supported me by help, guidance and expert supervision.

Thanks are also to all members of the Chemistry Department, Women's College, Ain Shams University, for their help.

قسم الكيمياء

إستخدام بعض المخلفات الصناعيه لإنتاج أسمنت قليل التكلفه

رساله مقدمه من

نورهان نبيل قاسم سليمان

للحصول علي درجه الماجستير

في الكيمياء غير العضويه والتحليليه

تحت إشراف

أ. د.عـصام عبد العزيز كيشار

أستاذ الكيمياء غير العضويه بكليه البنات للأداب والعلوم والتربيه جامعه عين شمس

أ.م. د./ دعاء عبد المنعم أحمد

أستاذ مساعد الكيمياء غير العضويه بكليه البنات للأداب والعلوم والتربيه جامعه عين شمس

قسم الكيمياء

إستخدام بعض المخلفات الصناعيه لإنتاج أسمنت قليل التكلفه

رساله مقدمه من نسورهان نبیل قاسم سلیمان

لجنه الإشراف

أ. د.عصام عبد العزيز كيشار

أستاذ الكيمياء غير العضويه بكليه البنات للأداب والعلوم والتربيه جامعه عين شمس

أ.م. د./ دعاء عبد المنعم أحمد

أستاذ مساعد الكيمياء غير العضويه بكليه البنات للأداب والعلوم والتربيه جامعه عين شمس

(2017)

قسم الكيمياء

اسم الطالبة: نورهان نبيل قاسم سليمان
عنوان الرسالة: إستخدام بعض المخلفات الصناعيه لإنتاج أسمنت قليل التكلفه
اسم الدرجه العلمية: درجه الماجستير في الكيمياء غير العضويه والتحليليه
تاريخ المناقشة: / /
لدنه التحكيم
لجنه التحكيم أ. د.عصام عبد العزيز كيشار
أستاذ الكيمياء غير العضويه بكليه البنات للأداب والعلوم والتربيه جامعه عين شمس
أ. م. د./ دعاء عبد المنعم أحمد
أستاذ مساعد الكيمياء غير العضويه بكليه البنات للأداب والعلوم والتربيه جامعه عين شمس
الدراسات العليا
ختم الإجازه أجيزت الرساله في / /
موافقه مجلس الكليه / / موافقه مجلس الجامعه / /
الموظف المختص مدير الادارة أ. د. وكيل الكليه

قسم الكيمياء

اسم الطالبه: نورهان نبيل قاسم سليمان

الدرجه العلمية: بكالوريوس علوم

القسم التابع له: الكيمياء

اسم الكليه: البنات للإداب والعلوم والتربيه

الجامعه: عين شمس

سنه التخرج: 2013

List of Contents

Subject	Page
Table of Contents	I
List of Tables	IV
List of Figures	VI
List of Abbreviations	IX
Abstract	X
Chapter (1) Introduction and literature Survey	1
I.1. Introduction	1
I.2. Literature Surevy	24
I.2.1.Granulated Blast-Furnace Slag (GBFS)	24
I.2.2. Alkali Activated Cement Kiln Dust (CKD)	26
I.2.3. Alkali Activated Silica fume(SF)	27
I.2.4. Alkali Activated Fly Ash (FA)	29
Chapter (2) Experimental Work	31
II .1. Starting materials	31
II .2. Preparation of dry mixes	33
II . 3. Preparation of alkaline activator (AA)	34
II .4 .Mixing	34
II .5 . Curing	35
II .6 . Methods of Investigation	36
II .6 .a. Setting time	36
II .6 .b. Bulk density measurements	36

II .6 .c. Total porosity	37
II .6 .d. Compressive Strength measurement	37
II .6 .e. Stopping of the hydration	38
II .6 .f . Chemically Combined water content	38
II .7. X- Ray diffraction (XRD)	39
Chapter (3) Results and discussion	
III. 1.Alkali Activation of GGBFS – CKD	40
III.1.a .Compressive strength	40
III.1.b. Chemically combined water content	42
III.1.c. Bulk density	43
III.1.d.Total porosity	45
III.1.e. X-ray diffraction	47
III.2. Alkali Activation of GGBFS –SF	51
III.2. a. Compressive strength	51
III.2. b. Chemically combined water content	53
III.2. c. Bulk density	55
III.2.d. Total porosity	56
III.2.e. X-ray diffraction	58
III.3. Alkali Activation of GGBFS – FA	62
III.3. a. Compressive strength	62
III.3. b. Chemically combined water content	64
III.3.c. Bulk density	66
III.3.d. Total porosity	68

III.3.e. X-ray diffraction	70
III.4. General disscussion	74
III. 4.1. Alkali Activation of GGBFS – CKD	74
III. 4.2. Alkali Activation of GGBFS – SF	75
III.4.3. Alkali Activation of GGBFS –FA	76
Summary and Conclusion	
References	
Arabic Summary	

List of Tables

Table	Description	Page
Table (1)	The chemical composition of starting	22
	materials	32
Table (2)	Mix composition of the prepared mixes.	33
Table (3)	Compressive strength (kg/cm2) of GBFS-	4.1
14616 (6)	CKD cured up to 180 days	41
Table (4)	Chemically combined water content (%) of	42
	GBFS-CKD cured up to 180 days.	42
Table (5)	Bulk density (g/cm3) of GBFS-CKD	4.4
	Cured up to 180 days	44
Table (6)	Total porosity (%) of GBFS-CKD cured up	46
	to 180 days	10
Table (7)	Compressive strength (kg/cm2) of GBFS-SF	52
	cured up to 180 days	0 2
Table (8)	Chemically combined water content (%) of	54
	GBFS-SF cured up to 180 days	
Table (9)	Bulk density (g/cm3) of GBFS-SF cured up	55
	to 180 days	
Table (10)	Total porosity (%) of GBFS-SF cured up to	57
	180 days	
Table (11)	Compressive strength (kg/cm2) of GBFS-FA	63
	cured up to 180 days	
Table (12)	Chemically combined water content (%) of	65
		L

	(GBFS-FA) cured up to 180 days	
Table (13)	Bulk density (g/cm3) of GBFS-FA cured up to 180 days	67
Table (14)	Total porosity (%) of GBFS-FA cured up to 180 days	69