Optimal Sizing of *C*-Type Passive Filters under Non-Sinusoidal Conditions: A Techno-Economic Study

by ISLAM FARAG MOHMED EL-SYD FARAG

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE IN

ELECTRICAL POWER AND MACHINES ENGINEERING

Faculty of Engineering, Cairo University GIZA, EGYPT 2015

Optimal Sizing of *C*-Type Passive Filters under Non-Sinusoidal Conditions: A Techno-Economic Study

by ISLAM FARAG MOHMED EL-SYD FARAG

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN

ELECTRICAL POWER AND MACHINES ENGINEERING

Under the Supervision of

Ass. Prof. Dr. Ahmed Mohamed Ibrahim Electrical power and Machine Dept. Faculty of Engineering Cairo University

Dr. Shady Hossam Eldeen Abdel Aleem Mathematical, Physical &life Science. 15th of May Higher Institute of Engineering.

Faculty of Engineering, Cairo University GIZA, EGYPT 2015

Optimal Sizing of *C*-Type Passive Filters under Non-Sinusoidal Conditions: A Techno-Economic Study

by ISLAM FARAG MOHMED EL-SYD FARAG

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE IN

ELECTRICAL POWER AND MACHINES ENGINEERING

Approved by the Examining Committee	
Ass. Prof. Dr.Ahmed Mohamed Ibrahim	Supervisor
Prof. Dr. Essam Eldin Abou El-Zahab	MEMBER
Prof. Dr. Said Abdelmonam wahsh Electronics Research Institute	MEMBER

Faculty of Engineering, Cairo University GIZA, EGYPT 2015

Engineer: ISLAM FARAG MOHMED FARAG

Date of Birth: 10 / 01 / 1989

Nationality: Egyptian

E-mail: eng_eslamfarag@yahoo.com

Phone: 0235687898-01006593915

Address: 15 nor-elsba7St., fysal, Giza

Registration Date: 1/10/2011

Awarding Date: / /

Degree: master of sciences

Department: Electrical Power and Machines Department

Supervisors: Ass. Prof. Dr. Ahmed Mohamed Ibrahim

Dr. Shady Hossam Eldeen Abdel Aleem

Examiners: Ass. Prof. Dr. Ahmed Mohamed Ibrahim Supervisor

Prof. Dr. Essam Eldin Abou El-Zahab

Prof. Dr. Said Abdelmonam wahsh

Title of Thesis: Optimal Sizing of C-Type Passive Filters under Non-

Sinusoidal Conditions: A Techno-Economic Study

Key Words: Harmonics, passive filters, power factor

Summary:

Genetic Algorithm toolbox (GA) provided by MatLab software is selected to find the optimal sizing of parameters of *C*-type passive filter. The optimal design of the proposed filters considers three optimization problems- minimization of the total current, voltage harmonic distortion and maximizing power factor. Each optimization problem considers practical constraints such as load power factor, total current and voltage harmonic distortion limitation at certain specified ranges, considering source and load nonlinearities, while taking into account compliance with IEEE Standard 519-1992 and IEEE Standard 18-2002. Finally, the effectiveness of *C*-type harmonic passive filters is demonstrated by means of various study cases, including a comparison between the results of the three objective functions. A comparative study between *C*-type filter and single tuned passive filters is represented, comparing with the uncompensated system configuration under non-sinusoidal conditions.

MEMBER

MEMBER

ACKNOWLEDGMENT

First and foremost thanks to Allah The most beneficial and merciful

My sincere appreciation and special thanks are due to my teacher, Ass. Prof. Dr. Ahmed Mohamed Ibrahim, professors in Electrical Power and Machines Dept, Cairo University, Egypt, for giving me the honor of finishing my work under his supervision. I would like to express my sincere gratitude for his encouragement, his truthful comments.

My sincere appreciation and special thanks are due to my teacher, Dr.Shady Hossam Eldeen Abdel Aleem, assistant professor in Electrical Power and Machines Dept., 15th of May Higher Institute of Engineering. Who guided my first steps in the realm of research, for his close supervision, continuous encouragement, patience, faithful comments, support, and for the time he freely gave for guiding me throughout the study.

I would like to express my sincere thanks to my father, mother, sister and brother for their patience and continuous encouragement in study. Special thanks to my friends for their everlasting support.

Last but not least, no words of thanks and feelings are sufficient.

CONTENTS

	Page
CONTENTS	i
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF SYMBOLS AND ABBREVIATIONS	vii
ABSTRACT	1
CHAPTER (1): INTRODUCTION	2
1.1. Introduction	3
1.2. Scope of thesis	4
1.3. Thesis overview	6
CHAPTER (2): POWER SYSTEM HARMONICS	7
2.1. Power quality description	8
2.2. Classification of Power Quality Disturbances	8
2.2.1 Waveform Distortion	8
2.2.2 Power Frequency Variations	11
2.2.3 Short-Term Voltage Variations	11
2.2.4 Long-Term Voltage Variations	13
2.2.5 Voltage Imbalance.	13
2.2.6 Transients.	14
2.3 Harmonics sources.	15
2.4. Effects of Harmonics on Distribution Systems	16
2.4.1. Thermal effects on transformers.	16

2.4.2. Neutral conductor overloading.	16
2.4.3. Miscellaneous effects on capacitor banks	17
2.4.3.1. Overstressing.	17
2.4.3.2. Resonant Condition	17
2.4.3.3. Unexpected fuse operation	17
2.4.4. Abnormal operation of electronic relays	17
2.4.5. Impact on motors	17
2.4.6. Pulsating torques rotating	18
2.4.7. Abnormal operation of solid-state devices	18
2.4.8. Consideration for cables and equipment operating in harmonic	18
2.4.8.1. Generators	18
2.4.8.2. Conductors.	19
2.5. Harmonic Mitigation Techniques	19
2.5.1. Line Reactors.	19
2.5.2. Phase multiplication systems (12-pulse, 18-pulse rectifier	
systems)	21
2.5.3. Filtering.	22
2.5.3.1. Passive filter.	23
2.5.3.2. Active filters.	26
2.6 Harmonic standards	29
2.6.1. IEEE standard 519-1992	29
CHAPTER (3): C-TYPE HARMONIC PASSIVE FILTRS DESIGN	
FOR DISTORTED LOADS	32
3.1. Introduction	33
3.2. C-type harmonic passive filters design for distorted loads	34
3.3. C-Type passive filter for harmonic compensation of distorted loads	38
3.4. Proposed system configuration	39
3.5. IEEE Std. 18-2002 constraints	43

3.6. Harmonic resonance check	
3.7. Optimization method of the proposed filter	
3.8. Economic assessment of the proposed passive compensator	
3.8.1. Calculation of the installation cost of the C- type passive filter	
3.8.2. Annual saving and payback period calculations	
3.8.2.1. Negated of the PF penalty	
3.8.2.2. Granted bonus due To overcorrected PF	
3.8.2.3. Charges due to reduction of consumers' contracted demand	
3.8.2.4. Saved cash due to reduced energy consumption charges	
3.8.2.5. Payback period.	
3.8.3. Return on investment	
DESIGN. 4.1. Abstract. 4.2. Introduction.	
4. 3. Uncompensated system results	
4.4. Simulation results of the optimal C-type passive filter	
4.5. Simulation results of single-tuned filter	
4.6. Comparative study between c-type and single-tuned type filters for	
4.6. Comparative study between c-type and single-tuned type filters for harmonic compensation of nonlinear loads.	
harmonic compensation of nonlinear loads	
harmonic compensation of nonlinear loads	
harmonic compensation of nonlinear loads. CHAPTER (5): CONCLUSIONS AND FUTURE WORK. 5.1. Conclusions.	

LIST OF TABLES

Table 2.1	Harmonic voltage distortion limits	29
Table 2.2	Harmonic current distortion limits	30
Table 4.1	System parameters for two cases under study	56
Table 4.2	Voltage source harmonics and current source harmonics referred to transformer's side	57
Table 4.3	Uncompensated system results for two cases, three objective	57
Table 4.4	C-type filter results in the two cases, three objectives	58
Table 4.5	Installation cost for the <i>C</i> -type filter parameters for the two cases under study, all in thousands Egyptian pounds, for 3 objective	59
Table 4.6	Main capacitor duties (According to IEEE Standard 18-2002), two cases, three objectives for <i>C</i> -type filter	59
Table 4.7	Cash saved, ROI and payback period calculation for <i>C</i> -type	60
Table 4.8	Single-tuned filter results in the two cases, three objectives.	66
Table 4.9	Installation cost for the single-tuned filter parameters for the two cases under study, all in thousands Egyptian pounds, for 3 objective	67
Table 4.10	Main capacitor duties (According to IEEE Standard 18-2002), two cases, three objectives for single-tuned filter	
Table 4.11	Cash saved, ROI and payback period calculation for single-tuned.	67 68

LIST OF FIGURES

		P
Fig. 2.1	Harmonic Distortion	
Fig. 2.2	Notching caused by a three phase power converter	
Fig. 2.3	Voltage Flicker	
Fig. 2.4	CBEMA Curve	
Fig. 2.5	Voltage Sag due to Motor Starting	
Fig. 2.6	Balanced & Unbalanced Voltages	
Fig. 2.7	An impulsive transient	
Fig. 2.8	An Oscillatory Transient	
Fig. 2.9	Line reactors.	
Fig. 2.10	Line reactor and DC line inductance based on passive Filtering	
Fig. 2.11	Twelve pulse rectifier system configuration	
Fig. 2.12	Series passive filter configuration	
Fig. 2.13	Electric diagrams of passive filter	
Fig. 2.14	Low Pass broadband filter configurations. (a)LC type (b) LLCL	
O	type	
Fig. 2.15	Active filter fundamental system configurations. (a) Shunt active filter, (b) Series active filter	
Fig. 2.16	Common hybrid active filters configurations.(a) Parallel combination of parallel active and parallel passive,(b) Hybrid of series active and parallel passive,(c) Series combination of series active and series passive, (d) Hybrid of parallel active and series passive	
Fig. 2.17	Point of common coupling from IEEE 519 applications guide	
-		
Fig. 3.1	One line diagram of a C-type passive filter	
Fig. 3.2	Main features of C-type harmonic filters: (a) C-type filter, (b) C-type filter at the fundamental frequency, (c) As frequency increases; C-type filter acts as a second-order filter, (d) C-type filter at tuning frequency (e) At higher frequencies; C-type filter	
	acts as a first-order filter	
Fig. 3.3	The system under study	
Fig. 3.4	Principle of operation of filters for a harmonic current source	

Equivalent single line diagram of C-type filter, nonlinear load,	
and other linear loads combined to a power system network	45
General flow chart for the C-type shunt passive compensator's search algorithm	48
Harmonic content of the load voltage, Case 1, objective1	62
Harmonic content of the load voltage, Case 2, objective1	62
Harmonic content of the supply current, Case 1, objective2	63
Harmonic content of the supply current, Case 2, objective2	63
Harmonic content of the load voltage, Case 1, objective3	64
Harmonic content of the supply current, Case 2, objective3	64
Harmonic content of the load voltage, Case 1, objective1	69
Harmonic content of the load voltage, Case 2, objective1	70
Harmonic content of the supply current, Case 1, objective2	70
Harmonic content of the supply current, Case 2, objective2	71
Harmonic content of the supply current, Case 1, objective3	71
Harmonic content of the load voltage, Case 2, objective3	72
Load voltage comparison of the proposed filters, Case 1, objective1	74
Load voltage comparison of the proposed filters, Case 2, objective1	75
Supply current comparison of the proposed filters, Case 1, objective2	75
Supply current comparison of the proposed filters, Case 2, objective2	76
Cost comparison of the proposed filters, Case 1, objective3	76
Cost comparison of the proposed filters, Case 2, objective3	77
	and other linear loads combined to a power system network

LIST OF SYMBOLS AND ABBREVIATIONS*

(*According to alphabetic order)

 $\mathbf{B}_{\mathbf{LH}}$ Load susceptance in mhos at harmonic order h

 $\mathbf{C}_{\mathbf{C}\mathbf{A}}$ Auxiliary capacitor cost in Egyptian pounds of the C-type

filter

 $\mathbf{C}_{\mathbf{CM}}$ Main capacitor cost in Egyptian pounds of the *C*-type filter $\mathbf{C}_{\mathbf{E}}$ Present value cost of energy losses in Egyptian pounds $\mathbf{C}_{\mathbf{L}}$ Reactor cost in Egyptian pounds of the *C*-type filter

Dpf Displacement power factor in percentη Transmission efficiency in percent

 $\mathbf{F}_{\mathbf{v}}$ Filter utilization factor

GAIN Power saved due to the transmission power loss reduction in

the supply network compared to the uncompensated system

 G_{Lh} Load conductance in mhos at harmonic order h

H. P. Harmonic pollution percent, describing the fitness of the

power harmonic filters

i Interest rate

 I_A RMS value of the auxiliary capacitor current in amperes I_{Ah} Average value of the auxiliary capacitor current in amperes

at harmonic order h

I_F RMS value of the main capacitor current in amperes

 I_{Fh} Average value of the main capacitor current in amperes at

harmonic order h

 I_{FN} Nominal RMS main capacitor current in amperes based on

the rated kilovolt-ampere reactive (kVAr) and voltage

I_L Rated RMS load current in amperes

I_{Lh} Average value of the load harmonic current in amperes at

harmonic order h

I_S RMS value of the supply current in amperes

I_{Sh} Average value of the supply current in amperes at harmonic

order h

ITHD Current total harmonic distortion in percent

k Filter life time in years

MVA_{SC} System short circuit capacity in megavolt-amperes

PCC Point of common coupling
PF Load power factor in percent
PFILTER C-type filter power loss in watts
PL Load active power per phase in watts
PLOSS Transmission power loss in watts
PS Supply active power per phase in watts

PV Present value factor

q The quality factor

QCA Auxiliary capacitor rating in reactive volt-amperes
Q_{CM} Main capacitor rating in reactive volt-amperes

Q_L Load reactive power per phase in reactive volt-amperes

Q_{LF} Reactor rating in reactive volt-amperes

R C-type filter resistance in ohms

 $\mathbf{R}_{\mathbf{F}}$ The hth harmonics resistance in ohms of the C-type filter

 $\mathbf{R}_{\mathbf{L}\mathbf{h}}$ Load resistance in ohms at harmonic order h

 $\mathbf{R}_{\mathbf{Sh}}$ Transmission system resistance in ohms at harmonic order h

 $S_{\rm F}$ Main capacitor rating in volt-amperes

 S_{FN} Nominal main capacitor rating in volt-amperes

TDD Total demand distortion in percent

TOTAL COST Total cost in Egyptian pounds of the *C*-type filter

U_C Capacitor unit cost in Egyptian pounds per reactive volt-

amperes

U_L Reactor unit cost in Egyptian pounds per reactive volt-

amperes

 U_{v} Cost of power loss in Egyptian pounds per kilowatt hours

 V_{CAP} Auxiliary capacitor peak voltage in volts

 $\mathbf{V}_{\mathbf{Ch}}$ Average value of the main capacitor voltage in volts at

harmonic order h

V_{CN} Nominal RMS main capacitor voltage in volts

V_L RMS value of the load voltage (line to neutral) in volts

 V_{LAP} Reactor peak voltage in volts

 V_{Lh} Average value of the load voltage in volts at harmonic order

h

V_S
 V_{Sh}
 RMS value of the source voltage (line to neutral) in volts
 V_{Sh}
 Average value of the source voltage in volts at harmonic

order

VTHD Voltage total harmonic distortion in percent Inductive reactance of the *C*-type filter in ohms

 $\mathbf{X}_{\mathbf{CA}}$ Auxiliary capacitive reactance of the *C*-type filter in ohms $\mathbf{X}_{\mathbf{CM}}$ Main capacitive reactance of the *C*-type filter in ohms $\mathbf{X}_{\mathbf{F}}$ The *h*th harmonics reactance in ohms of the *C*-type filter

 X_{Lh} Load reactance in ohms at harmonic order h

 $\mathbf{X}_{\mathbf{Sh}}$ Transmission system reactance in ohms at harmonic order h $\mathbf{Z}_{\mathbf{Ch}}$ The hth harmonics impedance in ohms of the C-type filter

 $\mathbf{Z}_{\mathbf{L}\mathbf{h}}$ The *h*th harmonics load impedance in ohms

 \mathbf{Z}_{Sh} The hth harmonics transmission impedance in ohms

ABSTRACT

Harmonic pollution of electrical distribution systems is not new; it can be found in all industrial facilities. Non-linear loads seem to be the main source of harmonic pollution in a power distribution system. Degradation of the load power factor, increases in transmission line losses, and reduction of the transmission network efficiency are all expected due to the advance and sophistication of non-linear loads; the level of voltage harmonic distortion in distribution networks will also increase significantly. Harmonic passive filters have a dual job as they compensate the load reactive power improving the load power factor, but they also distract harmonic currents through a low impedance shunt path with very slight flowing back into the system. Thus, they minimize the voltage distortion caused by nonlinear loads and prevent the proliferation of indistinct currents within the power system. Shunt passive filters are the most used item in the power quality market, due to their simplicity, economical cost and their possible different frequency response characteristics that can achieve a certain required harmonic filtering target. Ctype filter is investigated as an alternative approach, to avoid some of the disadvantages of traditional shunt passive techniques. In this thesis, the essential equations required for the C-type filter design, advantages, and disadvantages are identified. Genetic Algorithm toolbox (GA) provided by MatLab software is selected to find the optimal sizing of parameters of C-type passive filter. The optimal design of the proposed filters considers three optimization problems- minimization of the total current, voltage harmonic distortion and maximizing power factor. Each optimization problem considers practical constraints such as load power factor, total current and voltage harmonic distortion limitation at certain specified ranges, considering source and load nonlinearities, while taking into account compliance with IEEE Standard 519-1992 and IEEE Standard 18-2002. Finally, the effectiveness of C-type harmonic passive filters is demonstrated by means of various study cases, including a comparison between the results of the three objective functions. A comparative study between C-type filter and single tuned passive filters is represented, comparing with the uncompensated system configuration under non-sinusoidal conditions.

CHAPTER (1) INTRODUCTION