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Summary:  

 Genetic Algorithm toolbox (GA) provided by MatLab software is selected to find the optimal 

sizing of parameters of C-type passive filter. The optimal design of the proposed filters considers three 

optimization problems- minimization of the total current, voltage harmonic distortion and maximizing 

power factor. Each optimization problem considers practical constraints such as load power factor , total 

current and voltage harmonic distortion limitation at certain specified ranges, considering source and load 

nonlinearities, while taking into account compliance with IEEE Standard 519-1992 and IEEE Standard 18-

2002. Finally, the effectiveness of C-type harmonic passive filters is demonstrated by means of various 

study cases, including a comparison between the results of the three objective functions. A comparative 

study between C-type filter and single tuned passive filters is represented, comparing with the 

uncompensated system configuration under non-sinusoidal conditions. 
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ABSTRACT 

   Harmonic pollution of electrical distribution systems is not new; it can be found in all 

industrial facilities. Non-linear loads seem to be the main source of harmonic pollution in 

a power distribution system. Degradation of the load power factor, increases in 

transmission line losses, and reduction of the transmission network efficiency are all 

expected due to the advance and sophistication of non-linear loads; the level of voltage 

harmonic distortion in distribution networks will also increase significantly. Harmonic 

passive filters have a dual job as they compensate the load reactive power improving the 

load power factor, but they also distract harmonic currents through a low impedance 

shunt path with very slight flowing back into the system. Thus, they minimize the voltage 

distortion caused by nonlinear loads and prevent the proliferation of indistinct currents 

within the power system. Shunt passive filters are the most used item in the power quality 

market, due to their simplicity, economical cost and their possible different frequency 

response characteristics that can achieve a certain required harmonic filtering target. C-

type filter is investigated as an alternative approach, to avoid some of the disadvantages 

of traditional shunt passive techniques. In this thesis, the essential equations required for 

the C-type filter design, advantages, and disadvantages are identified. Genetic Algorithm 

toolbox (GA) provided by MatLab software is selected to find the optimal sizing of 

parameters of C-type passive filter. The optimal design of the proposed filters considers 

three optimization problems- minimization of the total current, voltage harmonic 

distortion and maximizing power factor. Each optimization problem considers practical 

constraints such as load power factor , total current and voltage harmonic distortion 

limitation at certain specified ranges, considering source and load nonlinearities, while 

taking into account compliance with IEEE Standard 519-1992 and IEEE Standard 18-

2002. Finally, the effectiveness of C-type harmonic passive filters is demonstrated by 

means of various study cases, including a comparison between the results of the three 

objective functions. A comparative study between C-type filter and single tuned passive 

filters is represented, comparing with the uncompensated system configuration under 

non-sinusoidal conditions. 
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