

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

6000 CH

DEVELOPING AN OPTIMUM ETCHING SYSTEM FOR BONDING DIFFERENT PORCELAIN RESTORATIONS

Thesis

Submitted to the Faculty of Oral and Dental Medicine, Cairo
University, in Partial Fulfillment for the Requirements of the
Doctor Degree in Oral and Dental Surgery, Crown and Bridge
Prosthodontics

By

Gamal El-Din Hussein El-Fouly

B.D.S, M.D.S (Cairo)

Faculty of Oral and Dental Medicine

Cairo University

2000

Supervisors

Prof. Dr. Hany Halim Nasr

Professor And Chairman Of Crown and Bridge Prosthodontics

Department Faculty Of Oral and Dental Medicine,

Cairo University

Prof. Dr. Badawy AbouEl-Mahassen Badawy

Professor of Crown and Bridge Prosthodontics
Faculty of Oral and Dental Medicine,
Cairo University

Prof. Dr. Mohamed Bahgat El-Kholi

Professor of Chemistry and Technology of Ceramic Materials,
National Research Center

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation, enormous thanks, and sincere gratitude to Dr. Hany Halim Nasr, Professor and Chairman of Crown and Bridge Prosthodontics Department, Faculty of Oral and Dental Medicine, Cairo University, for guiding me kindly, supporting me willingly, correcting me patiently, and teaching me how precision, honesty, and sincerity are needed in work as in life.

Words can never express how grateful I am to Dr. Mohamed Bahgat El-Kholi, Professor of Chemistry and Technology of Ceramic Materials, National Research Center, for his great help and encouragement, valuable advices and orientation, continuos effort, and kind care he expanded throughout the investigation.

Special thanks are due to Dr. Badawy Abou El-Mahassen Badawy, Professor of Crown and Bridge Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for his kind supervision and the facilities he offered me.

My thanks are due to Professor Dr. Samir El Kalla, Faculty of Agriculture Mansoura University for his assistance in the statistical evaluation of the data of this investigation.

Special appreciation is dedicated to Dr. Fattouh Abdallah Ramadan, Professor and former Chairman of Crown and Bridge Prosthodontics Department, Faculty of Oral and Dental Medicine, Cairo University. Also thanks are due to all the staff members of Crown and Bridge Prosthodontics Department for their help and assistance.

Special thanks are due to Dr. Adel El khoudary professor of Biomaterials, faculty of oral and dental medicine Cairo University for his kind advices and great help.

Appreciation and gratitude are also extended to Professor Dr. Abdel Hamid Hussein, Professor of metallurgy Faculty of Engineering Cairo University for his assistance in placing the facilities of his department at my disposal.

I wish also to express my deep gratitude and thanks to Dr. Mostafa El-Sherif, Professor and chairman of Photometry, National institute for standards, for his tremendous guide in the spectrophotometric study.

My thanks are due to the members of my family for their encouragement and help.

Finally, I wish to express my thanks to all those who have helped me to make this work possible.

CONTENTS

	Page
Introduction	1
Review of Literature	3
Aim of the Study	43
Materials and Methods	45
Results	78
Discussion	122
Summary	146
Conclusions	148
References	150
Arabia Summary	

List of Tables

LIST OF TABLES

Tables No		Page No
1	Etching conditions of the different porcelains.	52
2	Treatment conditions of porcelain samples used for	61
	shear bond strength test.	
3	Grouping of porcelain samples used for optical tests.	74
4	Guide values for the constituting oxides of the three	78
	porcelain systems.	
5	Mean and standard deviation (SD) of the shear bond	95
	strength (MPa) of composite resin luting cement bonded	
	to Mirage porcelain (M) after different surface	
	treatments.	
6	Mean and standard deviation (SD) of the shear bond	98
	strength (MPa) of composite resin luting cement bonded	
	to Vitadure porcelain (V) after different surface	•
	treatments.	
7	Mean and standard deviation (SD) of the shear bond	101
	strength (MPa) of composite resin luting cement bonded	
	to Duceram porcelain (D) after different surface	
	treatments.	
8	Mean Fracture toughness (MPa/m ^{1/2}) of Mirage	109
	porcelain (M) after being etched differently.	
9	Mean Fracture toughness (MPa/m ^{1/2}) of Vitadure	111
	porcelain (V) after being etched differently.	
10	Mean Fracture toughness (MPa/m ^{1/2}) of Duceram	113
	norcelain (D) after being etched differently.	

11	Translucency	$(T_d\%)$	and	color	difference	$(\Delta \mathbf{E})$	of	117
	Mirage porcela	ain (M) a	ıfter b	eing et	ched differe	ently.		
12	Translucency	$(T_d\%)$	and	color	difference	$(\Delta \mathbf{E})$	of	119
	Vitaduer porcelain (V) after being etched differently.							
13	Translucency	$(T_d\%)$	and	color	difference	(ΔE)	of	121
	Duceram porcelain (D) after being etched differently.							

.

List of Figures