

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

STUDIES ON FITTNESS OF FISH FOR HUMAN CONSUMPTION

Presented

By

TAKWA HESSIEN ISMAIL

(B.V.Sc, Zagazig University, 1985) (M.V.Sc Suez Canal University, 1994)

For

Ph. D. In

Control and Hygiene of Meat, Fish, Their Products and

Animal by Products

Prof. Dr. Hosny A.Abd El-Rhman

Prof. of Meat Hygiene

Fac. Vet. Medicine Suez Canal University

Prof. Dr. Makram A.M. Yassien Prof. of Meat Hygiene

Fac. of Vet. Med. Suez Canal Univ.

Dr. Hoda A. Awad Head researcher

Food Hygiene Department Animl Health Research Institute

BINK

Faculty of Veterinary Medicine Suez Canal University (1999)

بنير التوالي التحرال التحريد

صدق الله العظيم سورة النحل الآية (١٤)

Suez Canal University Faculty of Vet. Med. Department of Food Hygiene and Control

APPROVAL SHEET

This is to approve that the dissertation by Takwa Hessien Ismail to Suez Canal University entitled (Studies on fittness of fish for human consumption) for the Ph.D. has been approved in 31/10 / 1999 by the examining committee:-

Prof. Dr. Anwar Mostafa Darwish

Prof. of Meat Hygiene. Faculty of Vet. Med. Cairo University.

Prof. Dr. Abou-Baker Mostafa Fahmy Edries

Prof. of Meat Hygiene. Faculty of Vet. Med. Zagazig University (Moshtohor).

Signature

abdel Rolman Prof. Dr. Hosny Abd El-Latif Abd El-Rhman

Prof. of Meat Hygiene. Faculty of Vet. Med. Suez Canal University.

Prof. Dr. Makram A.M. Yassien

Prof. of Meat Hygiene. Faculty of Vet. Med. Suez Canal University.

/ 1999. Approved by the Faculty Council in

ACKNOWLEDGMENTS

First all, I am thankful to Allah for giving me the strength to carryout this research.

EVERY THANKS to Prof. Dr. Hosny A.Abd El-Rahman Professor of Meat Hygiene Fac. Vet. Med. Suez-Canal Univ. For his supervision of this study, continous helpful advices, Valuable support and encouragement, always having time to answer my questions, and for his guidance with this thesis.

I am much obliged and greatly indebted to **Prof. Dr.**Makram A. M. Yassein, Prof. Of meat hygiene, Fac. Vet.

Med. Suez Canal Univ. for his tremendous help to complete this work and for his continous advice.

I would like to express my greatest thanks to **Dr. Hoda Awad**, Head Researcher of food Hygiene (Animal Hlth. Res.

Inst.) for her whole-hearted cooperation and advice.

I wish to extend my thanks to **Dr. Magda Sabrey**Shabana, Head researcher in Ismailia Animal research

Laboratory for her great help.

DEICATED TO:

My Husband

Dr. FATHY

&

My kids

Ahmed, Diana & Mahmoud

CONTENTS

	Page
INTRODUCTION	1.
DEVICE OF LIFTINATINE	4
REVIEW OF LITERATURE	4 4
Organoleptic indices of fish Microbial indices of fish	8
Chemical indices of fish	54
Hydrogen ions concentration (pH)	54.
Total volatile Nitrogen	58
Histamine levels in fish	65
Thiobarbituric acid levels in fish	86
Acid value & Peroxide value	90
Experimental indices	94
MATERIAL AND METHODS	99
PART I	99
PART II	112
RESULTS	120
PART I	120
PART II	138
DISCUSSION	170
PART I	170
PART II	192
CONCLUSION	198
RECOMMENDATION	200
ENGLISH SUMMARY	204
REFERNCES	209
APPENDICS	
ARABIC SUMMARY	

LIST OF TABLES

1-List of tables for survey of fresh and frozen fish:

- Table (1): Organoleptic scores of Tilapia species.
- Table (2): Frequency percentages of organoleptic score of Tilapia species.
- Table (3): Organoleptic scores of Mackerel fish.
- Table (4): Frequency percentages of organoleptic scores of Mackerel fish.
- Table (5): Total psychrophiles count in the examined Tilapia species.
- Table (6): Total psychrophiles count in Mackerel fish.
- Table (7): Total proteolytic psychrophiles count in the examined Tilapia species.
- Table (8): Total proteolytic psychrophiles count in Mackerel fish.
- Table (9): Frequency distribution of proteolytic psychrophils in Tilapia species.
- Table (10): Frequency distribution of proteolytic psychrophils in Mackerel fish.
- Table (11): Total lipolytic psychrophiles count in the examined Tilapia species.
- Table (12): Total lipolytic psychrophiles count in Mackerel fish.
- Table (13): Frequency distribution of proteolytic psychrophils count in the examined Tilapia species.
- Table (14): Frequency distribution of proteolytic psychrophils count in the examined Mackerel fish.
- Table (15): Total Aeromonas count in the examined Tilapia species.
- Table (16): Total Aeromonas count in Mackerel fish.
- Table (17): Total Pseudomonas count in the examined Tilapia species.
- Table (18): Total pseudomonas count in Mackerel fish.
- Table (19): Frequency percentage of proteolytic & lipolytic Psychrophiles of Tilapia species at zero time.
- Table (20): Frequency percentage of proteolytic & lipolytic Psychrophiles of Tilapia species after 8 hours.
- Table (21): Frequency percentage of proteolytic & lipolytic Psychrophiles of Mackerel fish at zero time.
- Table (22): Frequency percentage of proteolytic & lipolytic Psychrophiles of Mackerel fish after 8 hours.
- Table (23): Chemical indices in the examined Tilapia species.
- Table (24): Chemical indices in Mackerel fish.
- Table (25): Frequency distribution of histamine content in Mackerel fish.

- Table (26): Organoleptic indices, Bacteriological indices and chemical indices of examined fish samples.
- Table (27): Correlation coefficient (Tilapia species at zero time).
- Table (28): Correlation coefficient (Tilapia species after 8 hours).
- Table (29): Correlation coefficient (Mackerelfish at zero time).
- Table (30): Correlation coefficient (Mackerel fish after 8 hours).

2- List of tables for experimental part:

- Table (31): pH and temperature of dipping solution.
- Table (32): pH values of Physiological saline after dipping.
- Table (33): Organolptic scores of Tilapia samples during storage period at 4C°.
- Table (34): Variance analysis (ANOVA-test) of organoleptic examination in Tilapia fish.
- Table (35): Variance analysis of organoleptic indices of the examined Tilapia fish (treatment x time)
- Table (36): pH values of treatment Tilapia species.
- Table (37): Variances analysis of pH value of the examined Tilapia species (treatment x time).
- Table (38): Total volatile Nitrogen of Tilapia fish during storage at 4C°.
- Table (39): Variance analysis of total volatile nitrogen of the examined Tilapia species (treatment x time).
- Table (40): Total Psychrophiles count on the surface of the examined Tilapia species.
- Table (41): Aeromonas count on the surface of the examined Tilapia species.
- Table (42): Pseudomonas count on the surface of the examined Tilapia species.
- Table (43): Total Psychrophiles count of Tilapia muscle stored at 4C°.
- Table (44): Variance analysis of total Psychrophiles count of the examined Tilapia species stored at 4C° (treatment x time)
- Table (45): Total Aeromonas count of Tilapia muscle stored at 4C°.
- Table (46): Variance analysis of Aeromonas count of the examined Tilapia species stored at 4C° (treatment x time)
- Table (47): Total Pseudomonas count of Tilapia muscle stored at 4C°.
- Table (48): Variance analysis of Pseudomonas count of the examined Tilapia species stored at 4C° (treatment x time)

INTRODUCTION

INTRODUCTION

Fish is considered one of the most important food article which consumed on large scale all over the world. It support the consumer with a high nutritive values protein specially lysine and methionine and good sources of vitamins and minerals. Since the chemical composition can vary widely, not only from fish to fish of the same species but also within an individual fish.

The important of fish flesh in human nutrition lies in the fact that protein content is about 20%, less in fat content ,but a higher proportion of mono-unsaturated or polyunsaturated fatty acids (60-85%). Subsequently, it is thought to be associated with reducing the risk of human cardiovascular disease due to its high content of omega-3-fatty acids which, lower the cholesterol content as well as decreasing the blood clotting activity (**Browne**, 1990).

Fish is prone to rapid microbial spoilage. Its high perishability is attributed to several intrinsic factors which, favour rapid microbial growth namely low collagen and lipid contents and comparatively high levels of soluble nitrogen compounds in the muscle. Fish is subjected to contamination with different microorganisms from different sources during handling, fishing vessel sanitation, processing and storage condition (Ward and Bay, 1988).

Fish is not only highly susceptible to spoilage but is also frequently implicated in the spread of food borne disease. Spoilage of fish and fish products is usually occur as a result of increased numbers of