Risk Factors and Early Diagnosis of Acute Renal Impairment in Patients with Sepsis

An essay Submitted for partial fulfillment of Master Degree in Intensive Care

BY

Khaled Mohamed Abdel Aziz M.B., B.CH, Faculty of Medicine, Ain Shams University

SUPERVISED BY

Prof. Dr. Ilham Abd el Latif Siam

Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Assist. Prof. Dr. Heba Bahaa Eldin El Serwi

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Rafik Emad Latif

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2013 - 2014

عوامل الخطورة والتشخيص المبكر للقصور بوظائف الكلى بمريض تسمم الدم

مقال توطئة للحصول على درجة الماجستير في طب العناية المركزة العامة

مقدم من

طبيب / خالد محمد عبد العزيز

بكالوريوس الطب والجراحة، كلية الطب، جامعة عين شمس

تحت إشراف

أ ـ د / الهام عبد اللطيف صيام

أستاذ التخدير والعناية المركزة كلية الطب - جامعة عين شمس

أم د / هبة بهاء الدين السروى

أستاذ مساعد التخدير والعناية المركزة كلية الطب عين شمس

د ارفیق عماد نطیف

مدرس التخدير والعناية المركزة كلية الطب . جامعة عين شمس

> كلية الطب جامعة عين شمس 2013 - 2013

List of Figures

- Figure 1-1 : Relative hypoxia in the outer medulla predisposes to ischemic injury in the S3 segment of the proximal tubule.
- Figure 1-2 : Vascular factors contributing to the pathogenesis of ischemic ARF. ET, endothelin; PG, prostaglandin
- Figure 1-3 : Following ischemia and reperfusion, morphological changes occur in the proximal tubules.
- Figure 1-4 : Hypoxic/ischemic proximal tubular necrosis results in activation of cysteine protease pathways involving calpains and both caspase-1 and caspase-3
- Figure 1-5 : Effects of ischemia on renal tubules in the pathogenesis of ischemic ARF.
- Figure 1-6 : Key pathogenic pathways involved in the clinical course of sepsis that also have implications in the pathophysiology of sepsis-induced acute kidney injury
- Figure 2-1 : Nephrotoxic agents
- Figure 2-2 : Categorization of acute renal disease based on complement levels.

Figure 2-3 : General guidelines for differentiating the etiology of acute kidney injury (i.e. prerenal vs renal) using laboratory studies

List of Tables

Table 1(1-1)	:	RIFLE classification system for acute kidney injury.
Table 2 (3-1)	:	Conventional markers for acute kidney injury.
Table 3 (3-2)	:	A partial list of emerging biomarkers for early detection of acute kidney injury.
Table 4 (4-1)	:	Pharmacological strategies for acute kidney injuries.

List of Abbreviations

ACE inhibitors : Angiotensin converting enzyme

inhibitor

renal replacement therapy

RRT :

AIIRA : angiotensin II receptor antagonists

AIN : Acute interstitial nephritis

FSGS : focal segmental glomerulosclerosis

AKI : acute kidney injury

anti-TNF : anti Tumor necrosis factor

ARF : acute renal failure

ATN : acute tubular necrosis

ATN : Acute tubular necrosis

CHF : congestive heart failure

CIN : Contrast-induced nephropathy

CKD : chronic kidney disease

CRRT : Continuous Renal Replacement

Therapy

ECM : extracellular matrix

١

eGFR : estimated glomerular filtration rate

NICE : National Institute for Health and

Guidelines Care Excellence

eNOS : endothelial nitric oxide synthase

ERK : extracellular signal-regulated kinase

FENa : fraction of excreted Na

GFR : glomerular filtration rate

HAART : Highly Active AntiRetroviral Therapy

HIV : Human immunodeficiency virus

HRS : Hepatorenal syndrome

IAP : intra-abdominal pressure

ICAMs : inter cellular adhesive molecules

ICU : intensive care unit

ADQI : Acute Dialysis Quality Initiative

group

IHD : Intermittent hemodialysis

IL-1 : Interluekin 1

IL-18 : Interluekin 18

IL-6 : Interluekin 6

iNOS : inducible nitric oxide synthase

NO : nitric oxide

JNK : Jun N-terminal kinase

KIM-1 : kidney injury molecule- 1

LDH : lactic dehydrogenase

L-FABP : L-type fatty acid-binding protein

L-NAME : L-NG-Nitroarginine Methyl Ester

MMP-9 : Matrix metallopeptidase 9

MRSA : methicillin resistant Staphylococcus

aureus

NGAL : neutrophil gelatinase-associated

lipocalin

nNOS : neuronal NO synthase

NSAID : non steroid anti inflamatory drug

NSF : Nephrogenic systemic fibrosis

RBC : red blood cell

RBF : renal blood flow

THP : Tamm-Horsfall protein

TLRs : Toll-like receptors

TNF- α : Tumor necrosis factor- α

 $\alpha MSH \hspace{1cm} : \hspace{1cm} \alpha\text{-melanocyte--stimulating hormone}$

Acknowledgement

First and for most, thanks to Allah "the most merciful"

In all gratitude, I extend my most sincere thanks to **Prof. Dr. / Ilham Abd-El Latif Siam,** Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for being the supervisor of this research and for her help and guidance to accomplish this work.

Particular thanks and profound gratitude should go to **Dr. / Heba Bahaa El-Din El Serwi,** Assistant professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her support and kind guidance.

Deepest appreciation and profound gratitude to **Dr./ Rafik Emad Latif** Lecturer of Anesthesia and Intensive Care,
Faculty of Medicine, Ain Shams University, for his guidance,
help, support, and constructive criticism to accomplish this
work.

List of contents

Title			
Introduction			
Aim of the work			
Chapter I Pathophysiology of Acute kidney injury and Sepsis			
Chapter II Etiology and Risk factors			
Chapter III Early Diagnostic procedures			
Chapter IV Management			
List of figures.			
List of tables.			
List of abbreviations.			
References			
Summary			
Arabic Summary			

Pathophysiology of Acute Kidney Injury and Sepsis

Introduction:

The development of acute renal failure (ARF) continues to be a problem that markedly affects outcome in critically ill patients. Despite advances in treatment, development of ARF continues to be associated with high mortality rates, ranging from 40% to 90% (*Mehta et al.*, 2007).

In addition, ARF is a major risk factor for non renal complications. Factors that may influence the high mortality rates include the increasing age of the population of patients and the existence of comorbid conditions (e.g. diabetes, heart disease, preexisting renal disease, preexisting vascular disease, sepsis and respiratory failure) (*Levy et al.*, 1996).

Additional evidence indicates that even milder forms of acute kidney injury (AKI), not just ARF requiring renal replacement therapy, are associated with excess mortality (Venkataraman et al., 2008).

Numerous studies have shown that ARF in patients in the intensive care unit (ICU) is associated with high short- and long-term case fatality rates, dialysis dependence, and reduced quality of

life. Until recently, no uniform standard for diagnosing and classifying ARF was available (*Hoste et al.*, 2006).

More than 35 different definitions of acute renal failure were used in clinical practice. A need for clear definitions of renal injury and renal failure has led to the request for measurable criteria (*Kellum et al.*, 2002).

A consensus on the need for a definition and a classification system to enable more accurate diagnosis of kidney injury was reached by the Acute Dialysis Quality Initiative group(ADQI), AKI refers to a sudden decline in kidney function that causes disturbances in fluid, electrolyte, and acid-base balances because of a loss in clearance of small solutes and a decreased glomerular filtration rate (GFR) (*Dennen et al.*, 2010).

Therefore, the term AKI has replaced the term ARF, with the understanding that AKI has a broad spectrum and encompasses the entire syndrome in all patients, not just patients who require renal replacement therapy but also patients with minor changes in renal function (*Hoste et al.*, 2003).

AKI Classification

Classification criteria for AKI include assessment of 3 grades of severity: risk of acute renal failure, injury to the kidney, and failure of renal function. The 2 outcome classifications are loss

of kidney function and end-stage renal disease. This 5-point system (Risk of injury, Injury, Failure, Loss of function, and End-stage renal failure) is known as the RIFLE classification system (Table 1-1) (*Kellum et al.*, 2008).

In several investigations on use of the RIFLE system in different populations of patients, RIFLE criteria correlated with outcome. Consequently, the RIFLE classification is being used to identify kidney injury and improve patients' outcome (*Hoste et al.*, 2003).

Table 1-1 RIFLE classification system for acute kidney injury							
Criteria							
RIFLE category	Glomerular filtration rate	Urine output					
Grades of severity							
<u>R</u> isk	Serum creatinine level increased 1.5 times or glomerular filtration rate decreased >25%						
<u>I</u> njury	Serum creatinine level increased 2 times or glomerular filtration rate decreased >50%	_					
<u>F</u> ailure	Serum creatinine level increased 3 times or glomerular filtration rate decreased >75% or serum creatinine level >4 mg/dL	hours or anuria for					