Name of Candidate: Ahmed Salah Hassan

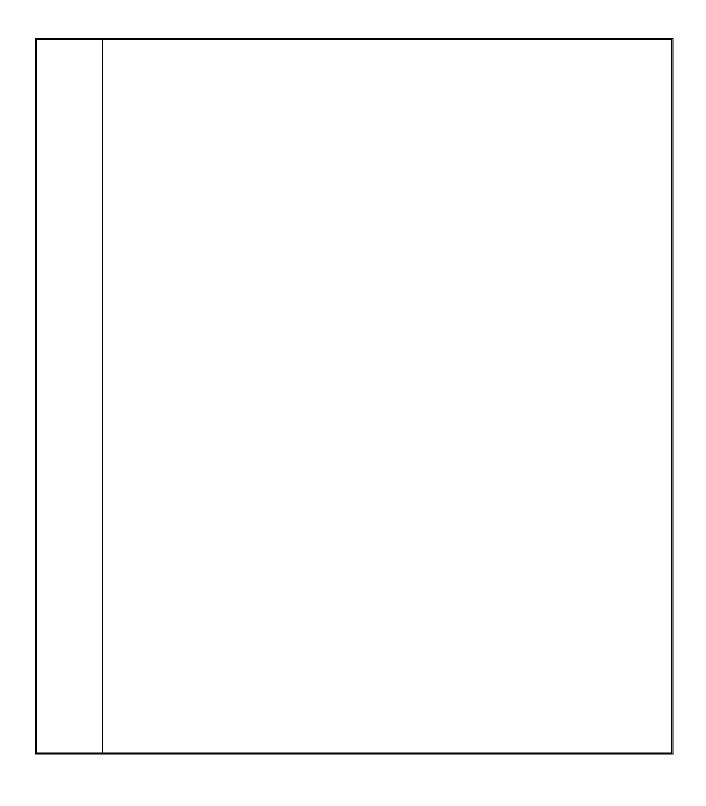
Degree: B. SC. Faculty of Agriculture, Cairo University

Title of Thesis: Application of Recent Technology in the taxonomy of Certain Acarines

in Egypt

Supervisors: Prof. Dr. Kawther M. El Kammah and Prof. Dr. Shahira O. EL Bshlawy

Department: Agricultural Zoology and Nematology


Branch: Acarology

Approval: Prof. Dr. Mohamed Abd Aziz zaher, Prof. Dr. Kawther M. El Kammah, Prof. Dr. Shahira O. EL Bshlawy, and Associate Prof. Makram Ahmed sayed.

ABSTRACT

Ticks and mites are responsible for serious economic loss, its parasitic on the animals and birds, identification of ticks and mites species has always been based on morphological characters, this method does not applied in cause of any damage in any specimen or engorged female, Recently, molecular genetics studies were introduced to differentiate among different genera and/or species depending on DNA analysis.

- Collected ticks (Rhipicephalus sanguineus, Argas persicus and A. arboreus) from (dogs, fowl houses and inhabited herons), respectively.
- Collected mites (Psoroptes natalensis, P. ovis, P. cuniculi and Dermanyssus gallinae) from (buffalos, sheep, rabbits and fowl houses), respectively.
- Microscopic morphological characters to differentiate between the three species *Psoroptes cuniculi* (Delafond, 1859). *P.ovis* (Hering, 1838) and *P. natalensis* (Hirst, 1919).
- Effects of *P. cuniculi* infection on host histopathological changes cause dematites to rabbits.
- To assess the possibility of using molecular markers and five primers to identify the tick species: *Argas arboreus* (Hoogstroal&Kohls), *Argas persicus* (Oken), and *Rhipicephalus sanguineus* (Larteill), and the mites species: *Psoroptes cuniculi*, *P. natalensis*, and *Dermanyssis gallinae* based on RAPD-PCR and to estimate the genetic distances between them.
- The similarity coefficient percentage of three species of ticks was strangest relationship was scored between *A. arboreus* and *A. persicus* at the similarity of 52% while the lowest one was scored between *R. sanguineus* and *A. arboreus* at the similarity of 48%.
- The similarity coefficient percentage were strongest relationship was scored between *P. natalensis* and *P. cuniculi* at similarity of 46 %, while, the lowest was scored between *D. gallinae* and *P. natalensis*. The similarity of 42 % showed between the *P. cuniculi* and *D. gallinae*.

اسم الطالب: أحمد صلاح حسن

الدرجة: بكالوريوس في العلوم الزراعية- قسم مبيدات — كلية الزراعة جامعة القاهرة عنوان الرسالة: استخدام التقنيات الحديثة في تقسيم بعض أكاروسات الحيوان في مصر المشرفون: أ.د. كوثر محمد القماح - أ.د. شهيرة محمد أنسي البشلاوي

قسم: الحيوان و النيماتولوجيا الزراعية

, **فرع:** الأكاروس

تاريخ منح الدرجة:

الموجز العربي

يعتبر القراد و الحلم المتطفل من أهم الآفات التي تسبب خسائر اقتصادية كبيرة لأنها تتطفل على حيوانات المزرعة و الطيور الداجنة.

تقسيم القراد و الحلم المنطفل يعتمد علي الشكل المورفولوجي باستخدام الميكروسكوب و أضيف إلية استخدام الهندسة الوراثية باستخدام طريقة RAPD-PCR.

- تم جمع أنواع القراد من الحقل, النوع (ريبيسفالس سانجونيس- أرجس بيرسيكس- أرجس أربوريس) من (الكلاب- مزارع الدواجن- أبو قردان) على التوالي.

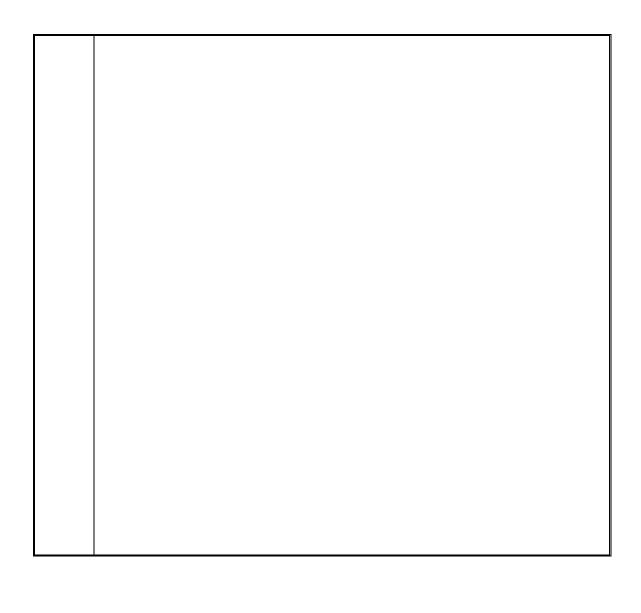
- تم جمع أنواع الحلم من الحقل, النوع (زوروبتس ناتالنسيس- زوروبتس أوفيس- زوروبتس كونيكيولاي- درمانيسيس جالنيا) من (الجاموس- الأغنام و الماعز- الأرانب- مزارع الدواجن) على التوالى.

- تم استخدام الميكروسكوب في تحديد الاختلافات المور فولوجية فيما بين ثلاثة أنواع من جنس $Psoroptes\ cuniculi$ - $P.\ natalensis$ - $P.\ ovis$) Psoroptes و أثبتت الدر اسات اختلافات الشكل المور فولوجي بين الأنواع الثلاثة.

- تم إصابة عدد من الأرانب السليمة في المعمل بالنوع Psoroptes cuniculi و التعرف على مقدار الإصابة التي يسببها الجرب لجلد الحيوان.

- إيجاد علاقة القرابة بين ثلاثة أنواع من القراد و علاقة القرابة بين نوعين من أنواع الحلم و دراسة نوع ثالث من الحلم و ذلك بالاعتماد على RAPD-PCR . فوجد أن:

Argas) على صلة قرابة بين أنواع القراد كانت فيما بين أفراد الجنس الواحد Argas) persicus


- أقل صلة قُرابة بين أنواع القرادكانت فيما بين (Rhipicephalus sanguineus و Argas arboreus كانت (48%)

- أعلي صلة قرابة بين أنواع الحلم كانت فيما بين أفراد الجنس الواحد(Psoroptes) natalensis و Psoroptes كانت 46 %)

- أقل صلة قرابة بين أنواع الحلم كانت فيما بين (Psoroptes natalensis و

(% 41 کانت Dermnyssus gllinaae

- - كما أثبتت النتائج أمكانية الاعتماد علي تقنيات البيولوجيا الجزيئية في تصنيف الأكاروسات المختلفة المعروفة و الغير معروفة.

ACKNOWLEDGMENT

This work was carried out under the supervision of **Prof. Dr. Kawther M. El Kammah**, Professor of Acarology, Agricultural Zoology and Nematology Department, Faculty of Agriculture, Cairo University, to whom the author wishes to express his deepest gratitude and appreciation not only for her supervision, encouragement and guidance but also for editing the manuscript.

Thanks are due to **Prof. Dr. Shahira O. El Beshlawy**, Professor of Acarology, Agricultural Zoology and Nematology Department, Faculty of Agriculture, Cairo University for her direct supervision and encouragement throughout this study.

Thanks also to **Dr. Zaki El Fiky**, Associate Professor of Genetics, Agricultural Genetics Department, Faculty of Agriculture, Fayoum University, for the educational guidance he provided throughout the biochemical studies done in this thesis.

The author also extends his appreciation to all the staff members Parasitic Acarines Research Center, Faculty of Agriculture, Cairo University for all facilities provided throughout the study.

LIST OF FIGURES

	Pages
1 - Collecting Rhipicephalus sanguineus from domestic dogs	31
2 - Feeding method for all stages of <i>Rhipicephalus sanguineus</i>	32
3 - Collecting sites of Argas persicus and Dermanyssus gallinae	
from fowl houses	33
4 - Feeding method for (a)larval, (b)nymphal and adult stages	
of Argas persicus and A. arboreus	34
5 - Trees around the zoo garden, Giza Governorate inhabited by	
herons	35
6 - Collecting Sites of Argas arboreus from bark tree cracks	
and under the trees	35
7 - Buffaloes infested with <i>Psoroptes natalensis</i>	37
8 - Sheep infested with <i>Psoroptes ovis</i>	38
9 - Scrubbbed <i>Psoroptes cuniculi</i> mites from lesions	39
10 - Rabbit infected with <i>Psoroptes cuniculi</i>	40
11 - Psoroptes natalensis: (A- Female genitalia), (B- Female	
anal region)	54
12 - Psoroptes ovis: (A- Female genitalia), (B- Female	
anal region)	55
13 - Psoroptes cuniculi (A- Female genitalia), (B- Female	
anal region)	56
14 - the male anal plate of A- Psoroptes cuniculi, B- Psoroptes	
ovis	57
15 – Comparative morphological different between the	
genital and anal plates of Psoroptes natalensis, P. ovis and	
P. cuniculi	58
16 - Normal rabbit integument (epidermal) and (dermal) layers	

(20X)	60
17 - Infested ear rabbit integument (crust)., (inflammation)	
and (20X)	61
18 - Infested ear rabbit integument, (abscess) and (20X)	62
19 - Infested ear rabbit integument, (Psoroptes cuniculi).	
(hyperkeratosis); (epidermal); (dermal); (mite) and (20X)	63
20 - Infested ear rabbit integument (acanothsis); (crust) and	
(20X)	64
21 - RAPD profiles of the three ticks species <i>Rhipicephalus</i>	
sanguineus, Argas persicus and A. arboreus amplified	
with RAPD primers, OPA-09(a), OPA-10(b), M: Molecul	er
weight marker (1kb DNA ladder).	72
22 - RAPD profiles of the three ticks species Rhipicephalus	
sanguineus, Argas persicus and A. arboreus amplified	
with RAPD primers, OPA-13(c), OPA-14, OPA-15(d),	
M: Moleculer weight marker (1kb DNA ladder)	73
23 - RAPD profiles of the three mites species <i>Psoroptes cunic</i>	uli,
P. natalensis, Dermanyssus gallinae. amplified with	
RAPD primers, (a) OPA-09, OPA-10, (b) OPA-13, OPA-	14.
and (c)OPA-15M: molecular weight marker (1kb DNA	
Ladder).	77

LIST OF TABELS

Page
1 - Sequence of the five arbitrary primers used in RAPD-PCR47
2 - Electrophoretic patterns of RAPD-PCR amplified fragments
detected in Rhipicephalus sanguineus, Argas persicus and
A. arboreus, using OPA-09 primer66
3 - Electrophoretic patterns of RAPD-PCR amplified fragments
detected in Rhipicephalus sanguineus, Argas persicus and
A. arboreus, using OPA-10 primer67
4 - Electrophoretic patterns of RAPD-PCR amplified fragments
detected in Rhipicephalus sanguineus, Argas persicus and
A. arboreus, using OPA-13 primer
5 - Electrophoretic patterns of RAPD-PCR amplified fragments
detected in Rhipicephalus sanguineus, Argas persicus and
A. arboreus, using OPA-14 primer69
6 - Electrophoretic patterns of RAPD-PCR amplified fragments
detected in Rhipicephalus sanguineus, Argas persicus and
A. arboreus, using OPA-15 primer70
7 - The total number of RAPD-PCR fragment generated by a battery
of 5 primers in Rhipicephalus sanguineus, Argas persicus and
A. arboreus71
8 - Similarity coefficient percentage among ticks
species Rhipicephalus sanguineus, Argas persicus and
A. arboreus based on RAPD-PCR74
9 - The total number of RAPD-PCR fragments generated by a
battery of 5 primers in three mites species: Psoroptes cuniculi,
P. natalensis and Dermanyssus gallinae76
10 - Electrophoretic patterns of RAPD-PCR amplified bands

detected in mites species Psoroptes cuniculi, P.
natalensis, Dermanyssus gallinae, using OPA-09 primer7
11 - Electrophoretic patterns of RAPD-PCR amplified bands
detected in the mites species Psoroptes cuniculi, P.
natalensis, Dermanyssus gallinae, using OPA-10
pimer79
12 - Electrophoretic patterns of RAPD-PCR amplified bands
detected in the mites species Psoroptes cuniculi, P.
natalensis, Dermanyssus gallinae, using OPA-13 primer8
13 - Electrophoretic patterns of RAPD-PCR amplified bands
detected in the mites species Psoroptes cuniculi, P.
natalensis, Dermanyssus gallinae, using OPA-14 primer8
14 - Electrophoretic patterns of RAPD-PCR amplified bands
detected in the mites species Psoroptes cuniculi,
P. natalensis, Dermanyssus gallinae, using
OPA-15 primer83
15 - Similarity coefficient percentage among mites species
Psoroptes cuniculi, P. natalensis, Dermanyssus gallinae
based on RAPD-PCR8

CONTENTS

IN'	TI	RODUCTION1
OE	BJ]	ECTIVES2
Lľ	ΤF	ERATURE REVIEW
	Ti	icks:
	-	Economic importance
	-	Biology4
	M	lites:
	-	Economic importance5
	-	Biology and Ecology of mites
	H	istopathological studies9
	Pl	nylogeny:
	-	Ticks DNA analysis (phylogeny)11
	-	Mites DNA analysis (phylogeny)15
MA	4 T	CERIAL AND METHODS
	Ti	icks:
		Collection and Colonization
	-	Rhipicephalus sanguineus(Latreill)28
	-	Argas (Persicargas) persicus(Oken)28
	-	Argas (Persicargas) arboreus (Hoogstraal and Kohls)29
		Identification30
	M	lites:
		Collection:
	-	Psoroptes natalensis (Hirst)36
	-	Psoroptes ovis (Hering)36
	-	Psoroptes cuniculi (Delafond)39
	_	Dermanyssus gallinae (De Geer)41

	Identification	41
Hi	istopathological studies	41
Dì	NA Isoiolation	43
-	Solutions and buffers	43
-	Extraction and purification	44
-	Determination of the concentration and purity	45
-	RAPD – PCR reaction	46
-	Thermo-cycling profile and determination of the	
	PCR products	48
-	Preparation of agarose gel	48
-	Data analysis used	49
RESU	ULTS	
Ti	cks:	
-	Rhipicephalus sanguineus.(Latreill)	50
-	Argas (Persicargas) persicus(Oken)	50
-	Argas (Persicargas) arboreus(Hoogstraal and Kohls)	50
M	ites:	
-	Psoroptes natalensis(Hirst)	51
-	Psoroptes ovis(Hering)	51
-	Psoroptes cuniculi(Delafond)	51
-	Dermanyssus gallinae(De Geer)	51
M	orphological studies:	
-	Psoroptes natalensis(Hirst)	52
-	Psoroptes ovis(Hering)	52
-	Psoroptes cuniculi(Delafond)	53
Hi	istopathological studies	59
Ph	nylogeny:	
	The patterns of (RAPD-PCR) of ticks	65
	The patterns of (RAPD-PCR)of mites	75

DISCUSSION	83
SUMMARY	87
REFERENCES	91
ARABIC SUMMARY	

Introduction

All ticks and most parasitic mites are obligate ectoparasites of domestic animals and birds, They are found throughout the world mostly in the tropics and subtropics but certain groups are adapted to desert and semi desert areas. Ticks and mites are responsible for serious economic loss which is brought about either directly by local injury, blood loss, injecting toxins and disease transmission to their hosts or indirectly by reducing host efficiency and production (eggs, meat, milk and milk products) by its influence on their metabolism and enzyme balance (El-Kammah *et al.* 1982).

Of all ectoparasites, Ixodida are highly specialized obligate parasites of a wide variety of terrestrial and flying vertebrates. They cause great economic losses in livestock production which include the transmission of infectious disenses from animal to human (viruses, rickettsiae, spirochaetes and certain protozoans) (*Theileria* and *Babesia*) between animals.

The identification of tick and mite species has always been based on morphological characters. These methods can not be applied to damaged or engorged specimens. Recently, molecular genetic studies were introduced to differentiate among different tick genera and/or species (El Kammah and Sayed, 1999; Poucher *et al.*, 1999). These methods depended upon protein and/or DNA finger prints.

We have applied a protocol for a simple, rapid and inexpensive method for DNA isolation from the eggs of three species of ticks, and three species of mites. The quantity and quality of extracted DNA were evaluated in comparison with a commercial kit, (and quality of DNA assessed by restriction endonuclease digestion and polymerase chain reaction (PCR) amplification).

The Genus *Psoroptes* Gravis, 1841 is a cosmopolitan obligate ectoparasite, which causes a debilitating dermatitis involving hair or wool loss and scab formation. The rabbit ear mite *P. cuniculi* (Delafond) is a parasite commonly found in a laboratory rabbit colonies. *P. ovis* (Hering) and *P. natalensis* (Hirst) cause a highly contagious disease of sheep and cattle, respectively. Lesions may occur on any part of the body but in badly affected animals they are most obvious on their sides. However it has been difficult to separate these species morphologically. This research is an attempt to report some morphological differences between these species, as well as DNA analysis to determine the phylogenetic origins of these species is done.

Objectives:

- 1 Microscopic morphological characters to differentiate between the three species *Psoroptes cuniculi* (Delafond, 1859). *P.ovis* (Hering, 1838) and *P. natalensis* (Hirst, 1919).
- 2 Effects of *P. cuniculi* infection on host histopathological changes.
- 3 To assess the possibility of using molecular markers to identify the tick species: *Argas arboreus* (Hoogstroal&Kohls), *Argas persicus* (Oken), and *Rhipicephalus sanguineus* (Larteill), and the mites species: *Psoroptes cuniculi*, *P. natalensis*, and *Dermanyssis gallinae* (De Geer). based on RAPD-PCR and to estimate the genetic distances between them.

LITERTURE REVIEW

Tick

1- Economic importance:

The role of *Argas persicus* and *A. hermanni* in transmitting *Borrelia anserine* in chickens and pigeons respectively was observed by Madbouly *et al.* (1990).

Argas (Persicargas) persicus collected from chicken farms in Giza, Egypt was found to be more abundant in spring than summer, decreasing in the autumn. The lowest number of ticks collected was in winter. A. persicus was also found on turkeys, and A. hermanni on pigeons. The highest density of A. persicus and A. hermanni was found in spring and summer, respectively, Oyoun (1981), Oyoun et al. (1990).

Infested resident and migratory birds were examined and 400 ticks were collected. 8 tick species were identified, *Ixodes ricinus*, *I. Pari*, *I. arboricola*, *I. Caledonicus sculpturatus*, *Haemaphysalis punctata*, *H. erinacei erinacei* and *Hyalomma marginatum*. *Argas reflexus* was numerous in abandoned pigeon nests, Tovornik. (1990)

Parasite fauna in poltry farms was studied in Serbia. Of the total 6937 chickens, 4 geese and 6 turkeys examined, *Argas persicus* was the only tick found, Pavlovic and Nesic (1991).

The ticks on farm animals in Libya were surveyed, of which 13 species of ixodid ticks and two species of argasid ticks, *Argas persicus* and *Ornithodoros foleyi*, were collected, Gabaj et al. (1992).

Ixodid and argasid ticks were investigated on some mammals and birds in Belgrade. *Ixodes ricinus*, *Rhipicephalus sanguineus*, *R. bursa*,