PREPARATION AND PHYSICAL CHARACTERIZATION OF NANO POROUS SILICON TO TAKE ADVANTAGE OF IT IN SOME ENVIRONMENTAL APPLICATIONS

Submitted By Hager Abd El Hakim Mohamed Nawar

B.Sc. of Science (Physics), Faculty of Science, Ain Shams University, 2008

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

2014

APPROVAL SHEET

PREPARATION AND PHYSICAL CHARACTERIZATION OF NANO POROUS SILICON TO TAKE ADVANTAGE OF IT IN SOME ENVIRONMENTAL APPLICATIONS

Submitted By

Hager Abd El Hakim Mohamed Nawar

B.Sc. of Science (Physics), Faculty of Science, Ain Shams University, 2008

This thesis Towards a Master Degree in Environmental Science Has been Approved by:

Name Signature

1-Prof. Dr. Mohamed Medhat Abd El Rahman

Prof. of Optics, Department of Physics Faculty of Science Ain Shams University

2-Prof. Dr. Mahmoud Mohammed M. Al-Nahhas

Prof. of Soild State Physics, Department of Physics Faculty of Education Ain Shams University

3-Prof. Dr. El-Sayed Yehia Mohamed El-Zaiat

Prof. of Optics, Department of Physics Faculty of Science Ain Shams University

4-Dr. Gamal Mahmoud Ali Youssef

Associate Prof. of Soild State Physics, Department of Physics Faculty of Science Ain Shams University

5- Prof. Dr. Mohammed Ghareeb El-Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Science - Institute of Environemntal Studies and Research Ain Shams University

2014

PREPARATION AND PHYSICAL CHARACTERIZATION OF NANO POROUS SILICON TO TAKE ADVANTAGE OF IT IN SOME ENVIRONMENTAL APPLICATIONS

Submitted By

Hager Abd El Hakim Mohamed Nawar

B.Sc. of Science (Physics), Faculty of Science, Ain Shams University, 2008

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Science
Department of Environmental Basic Science

Under The Supervision of:

1- Prof. Dr. El-Sayed Yehia Mohamed El-Zaiat

Prof. of Optics, Department of Physics Faculty of Science Ain Shams University

2-Dr. Gamal Mahmoud Ali Youssef

Associate Prof. of Soild State Physics, Department of Physics Faculty of Science Ain Shams University

3- Prof. Dr. Mohammed Ghareeb El-Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Science - Institute of Environemntal Studies and Research Ain Shams University

2014

ACKNOWLEDGEMENT

Thanks are all due to **Allah** for blessing this work until it has reached its end, as a part of his generous help throughout our life.

I am greatly indebted to my senior supervisor **Prof. Dr. El-Sayed Yehia El-Zaiat**, Professor of Optics, Department of Physics, Faculty of Science, Ain-Shams University for his interest, valuable assistance, motivation and patience during the preparation of the research protocol and the writing of this thesis.

I wish to express my sincere gratitude and great appreciation to **Dr. Gamal Mahmoud Youssef**, Associate Professor (Solid State Physics), Department of Physics, Faculty of Science, Ain-Shams University, for suggesting the point of this work and his endless and kind help throughout this work, working under supervision has been great honor to me.

I would like to extend my deepest thanks, respect and gratitude to **Prof. Dr. Mohamed Ghareeb El-Malky**, Professor of Environmental Geophysics, Environmental Basic Sciences Department, Institute of Environmental Studies and Research, Ain-Shams University, for his support through the whole process of this research.

I am also send my great thanks for **Prof Dr Hala Abd El-Hamid Kassem**, Vice Dean for post graduate studies and research, Institute of Environmental Studies and Research, Ain Shams University for her support and valuable advice and kind care during my research.

I would like to express my gratitude and appreciation to my family for their patience, encouragement and motivation to accomplish this work.

CONTENTS

LIST OF TABLES	.I
LIST OF FIGURES	II
LIST OF ABBREVIATIONSV	Π
CHAPTER 1 INTRODUCTION AND REVIEW O	
INTRODUCTION	. 1
1.1. Aim of the work	.3
1.2. Literature reviews.	.4
1.2.1. Studies on morphological properties of PSi	.5
1.2.1.1. SEM studies	.5
1.2.2. X- ray diffraction studies	12
1.2.3. Studies on optical properties.	13
1.2.3.1. Photoluminescence spectroscopy studies	3
1.2.3.2. Reflectance studies	6
1.2.4. Studies on chemical composition2	20
1.2.4.1. FTIR studies2	20

1.2.5. Studies on environmental applications of PSi
CHAPTER 2 THEORETICAL BACKGROUND26
THEORITICAL BACKGROUND26
2.1. Physical properties of crystalline silicon
2.2. Porous silicon (PSi)27
2.3. Fabrication of PSi Crystals
2.4. Formation mechanisms of PSi
2.5. Anodization parameters
2.5.1. Etching time
2.5.2. Current density35
2.6. Morphological properties
2.6.1. Pore type39
2.6.2. Pore shape
2.6.3. Pore size
2.6.4. Layer thickness and porosity42
2.7. Optical properties
2.7.1. Photoluminescence of porous silicon 45

2.7.2. Optical constants	47
2.8. Applications of PSi	49
2.8.1. Lasers	50
2.8.2. Filtered light emitting devices	50
2.8.3. Optical Sensors.	53
2.8.4. Chemical Sensing.	56
2.8.5. Biosensing	60
2.8.6. Bimolecular detection on PSi	61
CHAPTER 3 MATERIALS AND METHODS	64
MATERIALS AND METHODS	64
3.1. Sample preparation	64
3.1. Sample preparation	
	65
3.2. Experimental setup of electrochemical process	65
3.2. Experimental setup of electrochemical process3.3. Morphological measurements	65 67
3.2. Experimental setup of electrochemical process3.3. Morphological measurements3.3.1. Scanning Electron Microscopy (SEM) technique	65 67 67

3.4.2. Spectrophotometric measurements71
3.5. Fourier Transform Infrared (FTIR) Spectroscopy72
CHAPTER 4 RESULTS AND DISSCUSIONS
4.1. Morphological properties
4.1.1. Scanning Electron Microscope
4.1.2. The effect of HF:ethanol concentrations on Psi surface morphology
4.1.3. The effect of increasing etching time on Psi surface morphology
4.1.4. The effect of increasing ethanol concentration on PSi surface morphology
4.2. X-ray characteristics of PSi
4.3. Optical properties86
4.3.1. PL intensity
4.3.1.1. Effect of HF:ethanol concentrations at small etching time on PL spectra
4.3.1.2. Effect of HF:ethanol concentrations at large etching time on PL spectra
4.3.1.3 PL spectra for PSi samples dispersed in water

4.3.2. Reflectance measurements	92
4.3.3. Absorption coefficient	95
4.3.4. Optical energy band gap	97
4.4. FTIR spectral studies	100
CONCLUSIONS	104
SUMMARY	107
REFERENCES	111

<u>LIST OF TABLES</u>

Table 2.1 IUPAC classification of pores size
Table 2.2 Porous silicon luminescence bands
Table 2.3 different applications of PSi 63
Table 4.1 avarage pore diameter and thickness for different PSi samples 81
Table 4.2 avarage pore size and thickness for different PSi samples 84
Table 4.3 PL intensity and energy gap for different Psi samples at HF:ethanol 1:1, 2:1, 1:2 for etching time= 5 min and current density of 40 mA/cm. ² 1:2 and current density of 40mA/cm ² 87
Table 4.4 PL intensity and energy gap for different Psi samples at HF:ethanol 1:1, 2:1, 1:2 for etching time= 5 min and current density of 40 mA/cm ²
Table 4.5 Deduced optical energy gap for PSi samples prepared at HF:ethanol 1:1, anodizing time =5,20min and current density of 40 mA/cm² in air and water
Table 4.6 wave number position and attributions of the transmittance peak observed in several PSi samples by FTIR measurements

LIST OF ABBREVIATIONS

FWHM Full width at half maximum

XRD X ray diffraction

PSi Porous silicon

FTIR Fourier transforms infrared

SEM Scan electron microscope

TEM Transmission electron microscope

TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry

HF Hydrofluoric acid

PL Photoluminescence

LIST OF FIGURES

Figure 2.1 Direct and indirect band gap semiconducor
Figure 2.2 Fabrication of porous silicon (a) Schematic of porous
silicon formation by electrochemical etching (b) Applied current
density versus time waveform and (c) corresponding SEM image of
etched a porous silicon layer29
Figure 2.3 Reaction mechanism for formation of porous structure
on crystalline silicon
Figure 2.4 Pore formation in porous silicon
Figure 2.5 The layer thickness as a function of etching time for
two substrate –resistivities
Figure 2.6 SEM images of the as-prepared PSi etched for different
times; (a) 30 min, (b) 60 min, and (c) 90 min
Figure 2.7 The pore shape as a function of current density35
Figure 2.8 Growth rate of (PSi) layer as a function of current
density36
Figure 2.9 a,b Show the pore size and (a2,b2) show cross section
of PSi layer thickness as a function of current densities (a) 5
mA/cm ² and (b) 30 mA/cm ²

Figure 2.10 Cross-sectional TEM images showing the basic
differences in morphology among different types of samples. (a) p-
type silicon; (b) n-type silicon; (c) p-type silicon; (d) n-type
silicon
Figure 2.11 Types of pores; (a, b) blind, dead end, (c)
interconnected orbranched. (d) Totally isolated or 'closed', and (e)
'through' pores
Figure 2.12 Pore shapes; (a) cylindrical, (b) ink-bottle, (c) branching (d) cuboids or slit, and (e) triangular or
pyramidal
Figure 2.13 Idealized plan view of PSi layer shows the shape and
width of pore and its relation with the porosity44
Figure 2.14 The interaction of electromagnetic radiation with a material
Figure 2.15 Schematic of a Fabry- Perot filtered photoluminescent
PSI device (left), and its corresponding reflectance and PL spectra
(right)52
Figure 2.16 Left: schematic of a PSI-filtered silicon photodiode.
Right: efficiency spectrum (solid), compared to that of unfiltered Si
photodiode (dashed)53
Figure 2.17 Optical sensors based on porous silicon55