Role of Avastin in Anterior Segment of the Eye

Essay
Submitted for partial fulfillment of M.Sc.
Degree in ophthalmology

By

Mohamed Mahmoud Salama Adam

M.B. B.Ch., Faculty of Medicine Assiut University

Supervised by

Prof. Dr. Hassan Ezz-Eldin El-Sammaa

Professor of Ophthalmology Faculty of Medicine Ain Shams University

Dr. Azza Mohamed Ahmed Said

Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
Cairo Y. V.

دور الأفاستين في علاج أمراض الجزء الأمامي للعين

رسالة

تمهيدا للحصول على درجة الماجستير في طب وجراحة العيون

مقدمة من الطبيب / محمد محمود سلامة آدم بكالوريوس الطب و الجراحة كلية الطب- جامعة أسيوط

تحت إشراف

أ.د / حسن عزالدين السماع أستاذ طب وجراحة العيون كلية الطب – جامعة عين شمس

د/ عزة محمد أحمد سعيد مدرس طب وجراحة العيون كلية الطب – جامعة عين شمس

كلية الطب جامعة عين شمس القاهرة ٢٠١٠

THIS WORK IS DEDICATED TO MY FATHER

PROF. DR. MAHMOUD ADAM

THE BOTANY PROFESSOR IN FACULTY OF

SCIENCE

ASSIUT UNIVERSITY

&

MY DEAR MOTHER

البقرة: ٣٢

ACKNOWLEDGEMENT

Foremost, I thank ALLAH the most graceful and the most merciful for all his blessings and for being able to complete this work.

I would like to express my extreme gratitude to **Prof.** Dr. **Hassan Ezz-Eldin El-Sammaa** not only for the selection of the subject of this study, but also for his beneficial flexible guidance during this work. It has been a great honor to proceed this work under his supervision.

My great thanks & deep appreciation to Dr. Azza Mohamed Ahmed Said for her big effort, close supervision, valuable advice and meticulous care during this work.

I express my sincere appreciation to every member in my family. Without their support and love this work would never been accomplished.

Finally I am grateful to my friends & colleagues for their magnificent help, great support & encouragement.

CONTENTS

Title

*	L	.IST	OF	AB	BR	EV	ΊΑ	TIC	ΛC	IS
---	---	------	-----------	-----------	-----------	----	----	-----	----	----

* LIST OF FIGURES

Chapter 1: Antiangiogenesis
➤ Introduction
Angiogenesis & vasculogenesis of the eye
➤ Vascular endothelial growth factor
➤ Anti-VEGF Angiostatic Agents
Chapter 2: Avastina closer view
Pharmacology of Avastin
Physical properties
• Description
Mechanism of action
Presentation and storage
Dose and rout of administration
Preparation of the medication
What does off-label use mean?
Chapter 3: Bevacizumab and Corneal Neovascularization ۲۲
Corneal Neovascularization and Vascular Endothelial Growth Factor
➤ Bevacizumab as a Potent Inhibitor of Inflammatory Corneal
Angiogenesis and Lymphangiogenesis
Bevacizumab accelerates corneal wound healing
Avastin use in high risk corneal transplantation
Subconjunctival bevacizumab for corneal neovascularization
> The inhibitory effect of different concentrations of topical
bevacizumab on corneal neovascularization

Chap	oter 4: Bevacizumab and Pterygia ٤ ٨
>	Pathogenesis
>	Current approaches in medical And surgical treatment
	Effect of Subconjunctival Bevacizumab on Primary Pterygium
	Subconjunctival Bevacizumab use in Impending Recurrent Pterygium
	Topical Bevacizumab Eyedrops for Limbal-Conjunctival
	Neovascularization in Impending Recurrent
	Pterygium
Chap	oter 5: Bevacizumab and Neovascular Glaucoma
_	Bevacizumab as Adjuvant for Neovascular Glaucoma
	Intravitreal injection of Bevacizumab (Avastin) in Neovascular
	Glaucoma Glaucoma
>	Intracameral Bevacizumab (Avastin) for Neovascular Glaucoma.
Chap	oter 6: Bevacizumab and Trabeculectomy
>	°-Fluorouracil
	Mitomycin C
	CAT-10Y
>	Use of Bevacizumab in Trabeculectomy
	• Intra-operative use of bevacizumab
	Post-operative use of bevacizumab
* SUMM	ARY^٣
	ENCES^Y
	C SUMMARY
,, . .	· · · · · · · · · · · · · · · · · · ·

LIST OF ABBREVIATIONS

•	•-FU	°-Fluorouracil
•	AH	aqueous humour
•	AMD	age-related macular degeneration
•	Ang	Angiopoietins
•	BCVA	Best-corrected visual acuity
•	bFGF	basic fibroblast growth factor
•	BRVO	branch retinal vein occlusion
•	CAT-107	Cambridge Antibody Technology
•	CNV	corneal neovascularization
•	CRVO	central retinal vein occlusion
•	CSP	compounded sterile products
•	DR	diabetic retinopathy
•	EC	endothelial cells
•	ECM	extracellular matrix
•	EGF	Epidermic Growth Factor
•	EPC	endothelial precursor cells
•	Epo	Erythropoietin
•	FA	Fluorescein angiography
•	FDA	Food and Drug Administration
•	F-dUMP	°-fluoro-7' deoxyuridine °'-phosphate
•	FGF	fibroblast growth factor
•	flt-	fms-like tyrosine kinase-
•	HB-EGF	heparin binding epidermal growth factor

• **HIF** - \a Hypoxia-inducible factor - \a

• ICB intracameral bevacizumab

• **IGF-**\ insulin-like growth factor

• **IOP** intraocular pressure

• **IVB** intravitreal bevacizumab

• **IVT** Intravitreal

• **KDR** Kinase inserting domain-containing receptor

• LECs lymphatic endothelial cells

• MMC Mitomycin C

• MMPs Matrix metalloproteinases

• **NOS** Nitric oxide synthetase

• NV neovascularization

• **NVG** Neovascular glaucoma

• **NVM** neovascular membrane

• **PBK** pseudophakic bullous keratopathy

• **PBS** Phosphate-buffered saline

• **PDGF** Platelet derived growth factor

• **PDR** proliferative diabetic retinopathy

• **PDT** Photo dynamic therapy

• **PEDF** pigment epithelium-derived factor

• **PKP** penetrating keratoplasty

• PRP panretinal photocoagulation

• **RPE** Retinal pigment epithelium

• SGF Simulated gastric fluid

• TGF-β transforming growth factor beta

• TGF- β^{γ} tumor growth factor

• TNF-α tumor necrosis factor-alpha

• **tPA** tissue plasminogen activator

• **TSP-**\ thrombospondin -\

• **uPA** urokinase-type plasminogen activator

• UV-B ultraviolet light

• VA Visual acuity

• **VEGF** vascular endothelial growth factor

• **VEGFR** VEGF receptor

• α-SMA alpha-smooth muscle actin

LIST OF FIGURES

•	Fig. 1,1	Schematic of the receptors for VEGF	٧٧
•	Fig. Y, 1	A photo of Avastin vial and package	١٦
•	Fig. 7,7	Avastin (bevacizumab) molecular structure	
	١٦		
•	Fig. 7,1	Photograph of a patient with advanced PBK	۲۹
•	Fig. 7,7	Photograph of the same patient \(^{\gamma}\) months after PKP and	
	bevacizuma	ab application	۳٠
•	Fig. T,T	Photograph of the same patient ^ months after PKP and	
	bevacizuma	ab application	٣٠
•	Fig. T, £	Photograph of a patient with initial graft rejection	۳۱
•	Fig. T, o	Photograph of the same patient \ month after bevacizumab	
	application		۳۱
•	Fig. 7,7	Corneal neovascularization caused by long-standing parace	entral
	corneal ulce	er (A) before and (B) Y weeks after bevacizumab injection	٣٦
•	Fig. T, Y	Group \ (subconjunctival injection of \fo mg/\o ml	
	bevacizuma	ab). Group \((\forall , \circ mg/\cdot , \forall ml\) bevacizumab). Group \(\forall (\circ , \cdot ml) \)	ıg/
	۰٫۲ ml beva	acizumab)	۳۸
•	Fig. T, A	Results of the quantitative histopathological assessment of	
	corneal neo	vascularization after topical treatment with bevacizumab or	
	saline at ^ o	days post-cauterization	٣٩
•	Fig. 7,9	Microscopic photographs of corneal (NV) post-cauterization	n
	(haematoxy	vlin and eosin stain) & treatement with bevacizumab	. ٤٤
•	Fig. £,1	A Case with the residual pterygium of the eye was markedl	y
	injected fol	lowing excision	0 {

•	Fig. 4, Y	The same case one week after subconjunctival bevacizumab.	
•	Fig. ٤,٣	A, Slit-lamp image demonstrating a pterygium at time of	
	presentation	a. B, Two months after pterygium excision. C, After \ month	
	with bevaci	zumab eyedrop treatment and ε-month follow-up	
•	Fig. o, \	Mechanisms of the different therapeutic strategies in	1
	neovascular	glaucoma77	
•	Fig. o, Y	iris FA in two patients with neovascular glaucoma before &	ځ
	after intravi	treal injections of bevacizumab	
•	Fig. o, "	Slit lamp & Gonioscopic exam. Of NVG cases before & after	r
	ICB injection	onsvo	

LIST OF TABLES

Table 7,1	Neovascularization as a percentage of total corneal area in \.\ eye	es
	with different corneal disorders before and after a single Y,o-m	ng
	subconjunctival bevacizumab injection over a 7-month follow	V -
	up٣	٤
Table 7,7	Extent of neovascularization in ' eyes with different corne	al
	disorders before and after a single Y,o-mg subconjunctive	al
	bevacizumab injection over a 7-month follow	V-
	un Ya	:

Introduction

Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases, such as diabetic retinopathy (DR), agerelated macular degeneration (AMD), retinopathy of prematurity, central and branch retinal vein occlusion (CRVO and BRVO), infectious keratitis, trauma and various inflammatory ocular diseases. The avascular feature of certain ocular compartments, including the cornea, lens, vitreous and outer retina, is a unique anatomical characteristic to meet the requirement for normal visual function.'

In healthy adults, the fully developed ocular vascular system is in a quiescent status (also known as homeostasis), which is tightly controlled by the balance between the angiogenic stimulating factors, such as vascular endothelial growth factor (VEGF) and angiogenic inhibitors, such as pigment epithelium-derived factor (PEDF).

The homeostasis in the eye is important to keep the structural and functional integrity of the ocular vascular system. In a variety of pathological conditions, such as hypoxia, ischemia, inflammation, infection and trauma, the balance between angiogenic stimulators and angiogenic inhibitors is disturbed, leading to the formation of new vessels. The abnormal growth of new vessels into the avascular compartments will cause disturbance of light transportation. Moreover, these new vessels have abnormal cellular components and lack basement membrane and pericytes, and thus, are very fragile, leaking, and susceptible to hemorrhage. The resultant hemorrhage or accumulation of blood in ocular

١

cavities, such as anterior chamber and vitreous, leads to the further blockage of light transportation and decrease of visual acuity.

In addition, the leakage and accumulation of fluid, protein and lipid result in edema and exudation, which will cause visual damage by decreasing corneal transparency and impairment of the structure and function of retinal neurons.'

Among the different tissues in the eye, the retina, choroid and cornea are the most frequent sites of ocular NV. Iris NV is also seen in severe ischemic ocular diseases and neovascular glaucoma. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and as a consequence, no specific and satisfactory therapy is available for ocular NV at present, although laser treatment does show some effects on the control of retinal and choroidal neovascularization (CNV). In the past decade, a number of studies provided increasing evidence demonstrating that the imbalance between the angiogenic stimulating factors and angiogenic inhibitors is the major causative contributor to the angiogenesis induced by various insults, such as hypoxia, ischemia, inflammations or tumors.

Angiogenic inhibitors alone or in combination with other existing therapies are, therefore, promising in the treatment of ocular NV in the near future. The recent progress in the studies on the mechanisms and treatment of ocular NV are focusing on the implication and therapeutic potential of endogenous angiogenic inhibitors in ocular NV.