Assessment of Neutrophilic Function in Infants of Diabetic Mother

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatrics

By

Hayam Mohamed Saied Soliman

M.B., B.Ch., (2006)

Under Supervision of

Prof. Dr. Yehia Mohamed El Gamal

Professor of Pediatrics
Faculty of Medicine-Ain Shams University

Dr. Rania Mohamed Abdou

Lecturer of Pediatrics
Faculty of Medicine-Ain Shams University

Dr. Mohamed Tarif Hamza

Lecturer of Clinical Pathology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2014

First, and foremost, my deepest gratitude and thanks should be offered to "ALLAH", the Most Kind and Most Merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof. Dr. Yehia Mohamed El Gamal,** Professor of Pediatrics, Faculty of Medicine-Ain Shams University, for his continuous support and guidance for me to present this work, It really has been an honor to work under his generous supervision.

I acknowledge with much gratitude to **Dr. Rania Mohamed Abdou**, Lecturer of Pediatrics, Faculty of MedicineAin Shams University for her great supervision and unlimited help
to provide all facilities to accomplish this work.

I can't forget to thank **Dr. Mohamed Tarif Hamza**, Lecturer of Clinical Pathology, Faculty of Medicine-Ain Shams University, for his cooperation and help during the whole work.

Last but not least, thanks to my Parents and my Family, for helping me to finish this work.

Hayam Mohamed Saied Soliman

List of Figures

Figure No.	Citle	Page No.
Figure (1):	Stem cell differentiation	3
Figure (2):	Migration patterns of hematopoietic cells and mature lymphocytes	
Figure (3):	The cell-mediated immune responses	88
Figure (4):	Electron micrograph of human neutro	ophil10
Figure (5):	Proliferation of myloid cells	12
Figure (6):	Proinflammatory signaling results in increased expression of adhesion mole such as E-selectin on endothelial which facilitates "capture" of leukocytes to the vessel wall	ecules cells, the
Figure (7):	(A) Structural diagrams representin E- and L-selectin. (B) Selectin-med leukocyte recruitment.	liated
Figure (8):	Molecular interactions in the three proof neutrophil adhesion represent surface molecules on the endothelial	tative
Figure (9):	Three major pathways for bring extracellular materials in to a pinocytosis, receptor, med endocytosis and phagocytosis	cell liated
Figure (10):	Engulfment and digestion of a target neutrophil	-
Figure (11):	Schematic representation of the NA oxidase enzyme	

List of Contents

Subject	Page No.
List of Tables	ii
List of Figures	iv
List of Abbreviations	vii
Introduction	1
Aim of the Work	2
Review of Literature	
- The Immune System	3
- Neutrophils	10
- Immune System in Neonates	29
- The Infant of Diabetic Mother	38
Subjects and Methods	45
Results	53
Discussion	80
Conclusions	93
Recommendations	94
Summary	95
References	98
Arabic Summary	—

List of Tables

Eable No	v. Citle	Page No.
Table (1):	Representative contents of neutrophil granules	
Table (2):	White's classification of maternal d (revised) (Lee-Partiz and Cloherty, 20	
Table (3):	Descriptive statistics for history examination data of the studied group	
Table (4):	Effect of sex on neutrophil markers studied groups	
Table (5):	Effect of mode of delivery on neumarkers in IDMS and normal infants.	
Table (6):	Comparison between the studied gr regard CBC parameter	•
Table (7):	Comparison between the studied groregard DHR, CD11b, CD62L	
Table (8):	Comparison between IDMS, normal normal adult regarding DHR level	
Table (9):	Comparison between IDMS, normal and normal adult regarding CD11b le	•
Table (10):	Comparison between IDMS, normal and normal adult regarding CD62L le	
Table (11):	Correlation between DHR & CD11 CD11b & CD62L in IDMS	
Table (12):	Correlation between markers CD11b & CD62L) and CBC parame IDMS	
Table (13):	Correlation between DHR & CD11 CD11b & CD62L in normal infant	

List of Tables (Cont...)

Cable No	v. Eitle	Page No.
Table (14):	Correlation between markers CD11b & CD62L) and CBC parame normal infant	eters in
Table (15):	Correlation between DHR & CD1 CD11b & CD62L in normal adults	
Table (16):	Correlation between markers CD11b & CD62L) and CBC parame normal adults	eters in

List of Figures (Cont...)

Figure No.	Citle	Page	No.
Figure (12):	The fetal and neonatal events attrib to fetal hyperglycemia, fetal h insulinemia, or both in synergy	nyper-	41
Figure (13):	Diagrammatic representation of multiple deleterious effects of pregnancy of a diabetic patient of offspring during the various period fetal and postnatal life	the on the ods of	43
Figure (14):	Mode of delivery among studied gro	ups	54
Figure (15):	Comparison between IDMS and n infant as regard length.		54
Figure (16):	The effect of mode of delivery on value in IDMS		56
Figure (17):	Comparison between the studied gas regard WBC and neutrophil value	_	58
Figure (18):	Comparison between the studied gas regard CBC parameter	_	58
Figure (19):	Comparison between the studied gas regard CBC parameter		59
Figure (20):	Comparison of neutrophil lmarkers ,CD11b, CD62L) in the studied grou	`	60
• ,	ROC curve between IDMS and n infants as regard DHR		62
Figure (22):	ROC curve between IDMS and aduregard DHR		63
Figure (23):	ROC curve between normal infant adults as regard DHR		64

List of Figures (Cont...)

Figure No.	Eitle	Page No.
Figure (24):	ROC curve between IDMS and no infants as regard CD11b	
Figure (25):	ROC curve between IDMS and aduregard CD 11b	
Figure (26):	ROC curve between IDMS and aduregard CD 11b	
Figure (27):	ROC curve between IDMS and no infants as regard CD 62L On anal results of CD62L.	yzing
Figure (28):	ROC curve between IDMS and aduregard CD 62L	
Figure (29):	ROC curve between normal infants adults as regard CD 62L	
Figure (30):	Correlation between CD11b and value in IDMS	
Figure (31):	Correlation between CD11b and Hb in IDMS.	
Figure (32):	Correlation between CD62L and value in IDMS	
Figure (33):	Correlation between DHR and neutrovalue in normal infant	-
Figure (34):	Correlation between DHR and HCT in adult.	
Figure (35):	Correlation between CD11b and WI adult	

List of Abbreviations

ANC Absolute neutrophil count CBC Complete blood count

CFU-G Colony- forming unit- granulocyte

CFU-GM Colony-forming unit- granulocyte macrophage

Cyto Cytoplasmic tail

EGF Epidermal- growth- factor- like

FCR FC receptors

GBS Group B staphylococci

G-CSF Granulocyte colony-stimulating factor

Glut 1 Glucose transporter-1

GM-CSF Granulocyte-macrophage colony-stimulating factor

GP Glycoprotein

hCS Human chorionic somato-mammatropin

HLA-DR Human lecukocyte antigen DR hPL Human placental lactogen ICAM-1 Inter cellular adhesion molecule-1

IDDM Insulin dependent diabetes

IDMS Infant of diabetic mother Ig Immunoglobulins

IL-1 Interleukin-1
IL-8 Interleukin 8

ILCS Innate lymphoid cells

LFA-1 Leukocyte functional antigen-1

LPS Lipopolysaccharide

MCP-1 Monocyte chemotactic protein-1 MHC Major histocompatibility complex

NADPH Nicotinamide adenine dinucleotide phosphate

PB Peripheral blood

PICD Phagocytosis induced cell
PMNS Polymorphonuclear cells
PMNS Polymorphonuclear leukocyte
PNAD Peripheral node addressin
PNL Polymorphnouclear leukocyte
PSGL-1 p-selectin glycoprotein ligand-1

ROS Reactive oxygen species
TLR Toll-like-receptors
TM Transmembrane domain
TNF-1 Tumor necrosis factor 1

VCAM-1 Vascular cell adhesion molecule-1

WBC White blood cells

WHVP Wedged hepatic venous pressure

α1-AT Alpha 1-antitrypsin

Introduction

Three to ten percent of pregnancies are affected by abnormal glucose regulation, 80-88% of which are related to abnormal glucose control of pregnancy or gestational diabetes mellitus of mothers. Infant born to mothers with glucose intolerance are at an increased risk of respiratory distress, growth abnormalities (either large for gestational age or small for gestational age), hyperviscosity secondary to polycythemia, hypoglycemia, congenital malformations, hypocalcemia, hypomagnesemia and iron abnormalities (*Barnes*, 2007).

Added to the previously mentioned complications, few studies have shown that infants of diabetic mothers have impaired neutrophil motility & phagocytic capacity (Metha and Petrova, 2005). Furthermore, neutrophil migration (chemotaxsis) was found to be abnormal at birth in both term and preterm infants born to diabetic mothers (Stoll, 2003).

However, maternal gestational diabetes leads to impairment of cord blood neutrophil motility and phagocytic bactericidal capacity independently from the insulin requirement for the maintenance of normoglycemia during pregnancy (Metha and Petrova, 2005).

Aim of the Work

Assessment of neutrophils in infants of diabetic mother; number, neutrophils killing and chemotaxsis and correlating this to the prognosis of the patient.

The Immune System

Introduction:

The immune system is designed to protect the body from pathogens. It begins to develop in the embryo and starts with hematopoietic stem cells which differentiate into granulocytes, monocytes, and lymphocytes. These stems cells also differentiate into erythrocytes and megakaryocytes and continue to be produced and differentiate throughout the lifetime (Muller et al., 2002).

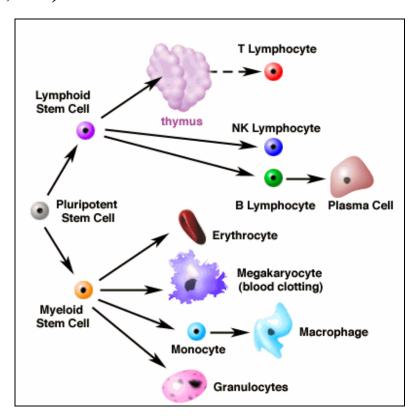


Figure (1): Stem cell differentiation

The immune system is an organization of cells and molecules with specialized roles in defending against infection. It has fundamentally different types of responses to invading microbes (*Devles and Roitt, 2000*).

The immune system is divided into two categories:

- Innate
- Adaptive.

Innate immunity: nonspecific defense mechanisms that come into play immediately or within hours of an antigen's appearance in the body (*Litman et al.*, 2005).

Innate immunity includes:

- Anatomic (skin, mucous membrane)
- Physiologic (Temperature, PH)
- Cells: mast cells, phagocytes (monocyte, neutrophil and macrophages), basophils and eoisinophils, natural killer cells.
- Complement system and inflammatory mediators.

(Rus et al., 2005)

Innate immune responses

Cellular components of innate responses:

The innate immune system consists of all the immune defenses that lack immunologic memory (*Peter et al., 2000*).

Innate immunity is nonspecific and noneducable. It is the body's first line of defense against many bacterial pathogens. Innate immunity resides in the skin, the mucous membranes, the polymorphonuclear cells (PMNs), and the complement system (*Hagey et al.*, 2002).

Innate immune recognition is mediated by germ-line-encoded receptors, which means that the specificity of each receptor is genetically predetermined. One advantage of these germ-line-encoded receptors is that they evolved by natural selection to have defined specificities for infectious microorganisms (Ruslan Medzhitov et al., 2000).

Adaptive immunity: refers to antigen-specific immune response. The antigen first must be processed and recognized, the adaptive immune system creates an army of immune cells specifically designed to attack that antigen. It includes a "memory" that makes future responses against a specific antigen more efficient (*Pancer and Cooper 2006*).