

Ain Shams University Faculty of Engineering Design and Production Engineering Department

Simulation approach to evaluate the performance of a milling machine based on the accuracy of the milling products

A Thesis Submitted in Partial Fulfilment for the Requirements of the Degree of PhD in Mechanical Engineering

by

Amr Ahmed Sayed Shaaban

Master of Science in Mechanical Engineering

Supervised by:

Prof. Dr. Monir Mohamed Farid Koura
Asst. Prof. Mohamed Lotfy Zamzam

Cairo-2015

Ain Shams University Faculty of Engineering Design and Production Engineering Department

Simulation approach to evaluate the performance of a milling machine based on the accuracy of the milling products

A Thesis Submitted in Partial Fulfilment for the Requirements of the Degree of PhD in Mechanical Engineering

by

Amr Ahmed Sayed Shaaban

Master of Science in Mechanical Engineering

Supervised by:

Prof. Dr. Monir Mohamed Farid Koura
Asst. Prof. Mohamed Lotfy Zamzam

Cairo-2015

STATEMENT

This thesis is submitted as partial fulfillment of Ph.D. degree in mechanical engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity

Signature

Amr Ahmed Sayed Shaaban

EXAMINERS COMMITTEE

The undersigned certify that they have read and recommend to the Faculty of Engineering – Ain Shams University for acceptance a thesis entitled "Simulation approach to evaluate the performance of a milling machine based on the accuracy of the milling products" submitted by Amr Ahmed Sayed Shaaban, in partial fulfillment of requirements for the degree of Doctor of Philosophy in Mechanical Engineering.

Name Signature

Prof. Dr. Azza Fathalla Barakat

Professor of Production Engineering
Dean of Faculty of Engineering- Helwan University

Prof. Dr. Hesham Aly Abdelhamed Sonbol

Professor and Head Design and Production Engineering Department Faculty of Engineering-Ain Shams University

Prof. Dr. Monir Mohamed Farid Koura

Professor of Production Engineering
Design and Production Engineering Department
Faculty of Engineering-Ain Shams University

ACKNOWLEDGMENT

My very respectful supervisor **Professor Monir Koura**; it is needless to say that I owe you so much for your tireless efforts in guiding and supervising. I thank you deeply for your patience and tolerance. I know that you always look up for the best in everything. You may have not had the best student, but you taught me never to stop trying.

I also want to extend my thanks and gratitude to **Dr. Zamazam**. I was always in need for your helpful advice and to your fatherly feelings towards me.

Abstract

This thesis presents a simulation system which is employed in order to evaluate the static, dynamic, and thermal performance of machine tools. Obtaining such a virtual model could replace many experimental tests that must otherwise be carried out each time the parameters affecting the machine performance are changed. The system is created based on welldefined design considerations, then, it is verified, and applied on some realistic cases. The system evaluates the machine tool performance based on several perspectives namely: static loop stiffness, mode shapes, frequency response function at tool center point, and thermal deformation. Mechanical modeling of mechanical structure and other subsystems of machine tool is achieved, cutting loads are analytically generated, and the heat generation at the hot spots is determined as well. Cutting conditions, cutter and work piece characteristics, category of mechanical structure, supporting webs, position of spindle head are all considered when evaluating the performance of the machine tool in order to provide designers with helpful recommendations in the early design stage. The obtained results from the designed simulation approach provide an evaluation of the behavior of the tool center point in relation to the work piece. Since that behavior will be reflected on the product, these results can be used as criteria for the product accuracy.

The designed evaluation system is proved to give a realistic simulation of the performance of machine tools that concerns the behavior of various machine tool elements and the parameters affecting the machining process.

Keywords:

Machine tools; Static loop stiffness; Natural frequencies; Dynamic performance; Finite element method (FE); Thermal deformation.

Thesis summary

Virtual prototyping is one of the most crucial research points in the field of machine tool design over the last decade. It provides the designers with a realistic simulation of the machine tool behavior without the need for experimental tests that consume cost and time. Obtaining such a realistic model facilitates investigations and modifications during the design stage. Among various modeling techniques, the FEM technique is proved to be a useful mathematical model for simulation.

In this thesis, a virtual system that employs the FEM technique is created to evaluate the static, dynamic, and thermal performance of machine tools. Modeling of the machine tool mechanical structure that includes machine bed and column is carried out together with the modeling of the mechanical and thermal behavior of various machine tool elements such as guide ways, feed drives, spindle unit, and bolted connections. On the other hand, in order to simulate the cutting process and integrate its contribution to the overall machine tool performance, analytical methods are used to obtain the cutting loads generated on both TCP and worktable during single tooth cutting interval. Based on the desired logic and the designed flow chart, the evaluation system is constructed so as to comprise five analysis modules created using FEM solving tool. The prerequisites of each module, the data connection among them, and the generated results from each are all clearly defined.

The system is applied to a case study where it is used to evaluate the static, dynamic, and thermal performance of a 3-axis open milling machine tool. All useful data related to the mechanical structure, various machine subsystems, and the cutting process is clearly defined and entered to the data sink of the evaluation system. The results generated by static analysis give an evaluation of the static performance of the machine tool in terms of

directional and total relative deformation between TCP and worktable and the static loop stiffness in various planes. The dynamic performance of the studied machine tool is evaluated based on the results generated by modal and harmonic analyses such as the fundamental frequency, the range of the first six mode shapes, and the TCP compliance along the exciting frequency range. In the same context, the time-varied deformation on both TCP and worktable in x and y-directions is generated by the transient response module along single tooth interval. Besides, the thermal performance is evaluated in terms of temperature distribution all over the milling machine and the thermal deformation at critical regions such as TCP guide ways and screws. The obtained results from the designed simulation approach provide an evaluation of the behavior of the tool center point in relation to the work piece. Since that behavior will be reflected on the product, these results can be used as criteria for the product accuracy.

The designed evaluation system is then employed to carry out some investigations that help the machine tool designers to achieve the desired performance during the early design stage. These investigations include the comparison of open and closed structures, the effect of supporting webs in columns, and the spindle head position effect, which are all carried out and the results are represented.

The designed system is proved to be capable of giving a total evaluation of the performance of machine tools concerning the major parameters that affect it.

Contents

ABS	TRACT	V
THE	SIS SUMMARY	VI
TAB	LE OF CONTENT	VIII
LIST	OF TABLES	XIII
LIST	OF FIGURES	XIV
NOM	ENCLATURE AND ABBREVIATIONS	XVIII
СНА	PTER 1 INTRODUCTION	19
СНА	PTER 2 LITERATURE REVIEW	5
2.1	Virtual modeling of machine tools	5
2.1	.1 Modeling of the mechanical structures and other	
sul	osystems	5
2.1	.2 Modeling of the cutting process	11
2.1	.3 Thermal deformation analysis in machine tools	14
2.2	Problem identification	15
2.3	Research objectives	16
СНА	PTER 3 THE VIRTUAL EVALUATION SYSTEM	17

3.1.	Definition of the evaluation aspects	17
3.	1 Static performance of machine tool	17
3.	2 Dynamic performance of machine tool	17
	.1.2.1. Modal analysis	18
	.1.2.2. Frequency response function (FRF)	18
	.1.2.3. Dynamic simulation of TCP in time domain	19
3.	3 Thermal performance of machine tool	19
3.2.	Modeling of the mechanical structure	20
3.	1. 3D modeling of mechanical structure	20
3.	2 Contact definition	21
3.	3 FE model of mechanical structure	21
3.3.	Modeling of guide ways	22
3.	1. Modeling of guide way stiffness	22
3.	2. Modeling of sliding friction heat generation	23
3.4.	Modeling of feed drive units	24
3.	1. Modeling of the mechanical behavior of the feed drive	25
3.	2. Modeling of the thermal behavior of feed drive system	26
	.4.2.1. Heat generation of electric motor	26
	.4.2.2. Heat generation of bearings	26
	.4.2.3. Friction heat at ball screw/nut	27
3.5.	Modeling of machine tool spindle	27
3.	1. Modeling of the mechanical behavior of the spindle unit	27
3.	2. Modeling of the thermal behavior of the spindle unit	28
3.6.	Modeling of bolted connections	29
3.7.	Modeling of spindle head position	30
3.8.	Modeling of the cutting process	31
3.	1. Modeling of the cutting loads	31

3.8	3.2. N	lodeling of cutting heat generation	31
3.9.	Const	ruction of the evaluation system	32
3.10.	Sumn	nary	36
СНА	PTER 4	VERIFICATION OF VIRTUAL EVALUATION	
SYST	ГЕМ		37
4.1.	Case	definition	37
4.2.	Prepr	ocessing	38
4.2	2.1. A	djusting spindle head position	39
4.2	2.2. C	utting loads generation	39
4.2	2.3. P	reprocessing of static and dynamic analyses	40
4.2	2.4. P	reprocessing of thermal analysis	40
4	4.2.4.1.	Sliding friction at Guide ways	40
4	4.2.4.2.	Heat generation at motors	41
4	4.2.4.3.	Heat generation at bearings	41
4	4.2.4.4.	Rolling friction at screws/nuts	41
4	4.2.4.5.	Cutting heat temperature	42
4.3.	Static	analysis results	42
4.4.	Moda	l analysis results	42
4.5.	Harm	onic analysis results	43
4.6.	TCP d	eflection during one tooth cycle	43
4.7.	Thern	nal analysis results	50
4.8.	Sumn	nary	54

CHAPTER 5 COMPARATIVE INVESTIGATION ON MILLING MACHINE STRUCTURES USING THE VIRTUAL EVALUATION SYSTEM

SYS	TEM		55
5.1.	Ор	en and closed categories	. 55
5.	1.1.	FE modeling	55
5.	1.2.	Comparative investigation based on static performance	55
5.	1.3.	Comparative investigation based on mode shapes	58
5.	1.4.	Comparative investigation based on FRF at TCP	61
5.2.	Effe	ect of supporting webs on open categories	. 63
5.	2.1	Effect of supporting webs on static performance	63
5.	2.2	Effect of supporting webs on the dynamic characteristic	64
5.	2.3	Effect of supporting webs on the dynamic performance	65
5.3.	The	impact of various types of column webs on its	
perf	ormai	nce	. 67
5.	3.1	Static performance of machine tool for various column	
W	eb typ	es	68
5.	3.2	Effect of web type on column's dynamic performance	69
5.4.	lmp	proved open categories performance	. 70
5.	4.1	Improved static performance	71
5.	4.2	Improved dynamic performance	71
5.5.	Effe	ect of supporting webs on closed categories performance.	. 73
5.	5.1	Effect of supporting webs on static performance	73
5.	5.2	Effect of supporting webs on dynamic characteristic	75
5.	5.3	Effect of supporting webs on dynamic performance	76
5.6.	Inv	estigation of position dependency in machine tools	. 78
5.	6.1	Position dependency of machine tool static performance	78
5.	6.2	Position dependency of machine tool mode shapes	79

5.6.3	Position dependency of dynamic compliance	80
5.7. Sun	nmary	82
CHAPTER	2 6 CONCLUSIONS	83
BIBLIOGE	Р	85

List of Tables

Table 3-1 evaluation sytem entries and obtained results
FROM EACH MODULE
Table 4-1 input data to evaluate the performance of the
MILLING MACHINE TOOL
TABLE 4-2 THE FIRST SIX NATURAL FREQUENCIES OF THE MACHINE
TOOL AND THE MAXIMUM DEFORMATION AT EACH MODE SHAPE44
TABLE 5-1 FIRST SIX NATURAL FREQUENCIES FOR BOTH OPEN AND
CLOSED CATEGORIES AND THE POSITION OF MAXIMUM DEFORMATION
AT EACH MODE SHAPE
TABLE 5-2 FIRST SIX NATURAL FREQUENCIES FOR FULL WEB OPEN
CATEGORY AND THE POSITION OF MAXIMUM DEFORMATION AT EACH
MODE SHAPE
TABLE 5-3 THE FIRST SIX NATURAL FREQUENCIES FOR DIFFERENT
TYPES OF COLUMNS: RIB FREE COLUMN, AND FOUR TYPES OF RIBBED
COLUMNS
Table 5-4 First six natural frequencies for the entire
MODIFIED STRUCTURE AND FOR THE INCLINED COLUMN INDIVIDUALLY.
72
Table 5-5 First six natural frequencies for full web closed
CATEGORY AND THE POSITION OF MAXIMUM DEFORMATION AT EACH
MODE SHAPE75
TABLE 5-6 FIRST SIX NATURAL FREQUENCIES FOR OPEN STRUCTURE AT
FOUR DIFFERENT POSITIONS OF SPINDLE HEAD. 80

List of Figures

FIGURE 3-1 MODELING OF MACHINE TOOL GUIDE WAYS USING SPRING
ELEMENTS23
FIGURE 3-2 A SCHEMATIC CONSTRUCTION OF THE FEED DRIVE SYSTEM.
24
FIGURE 3-3 LUMPED MASS TO SIMULATE THE MACHINE DRIVES25
FIGURE 3-4 SECTIONAL VIEW FOR THE CONSTRUCTION OF THE SPINDLE ASSEMBLY
ASSEMBL I
FIGURE 3-5 BOLTED CONNECTIONS BETWEEN COLUMN/BED AND BED/BASE
DLD/ DASL.
FIGURE 3-6 THE SPINDLE HEAD POSITION AND ITS DEPENDENT
VARIABLES31
FIGURE 3-7 BLOCK DIAGRAM OF THE VIRTUAL EVALUATION SYSTEM.
34
FIGURE 3-8 A SAMPLE OF THE INPUT/OUTPUT PANEL OF THE DESIGNED
EVALUATION SYSTEM34
FIGURE 3-9 THE LOGIC CHART OF THE EVALUATION SYSTEM35
FIGURE 4-1 THE 3D MODEL OF A 3-AXIS OPEN CATEGORY MILLING
MACHINE TOOL
FIGURE 4-2 THE FE MODEL OF A 3-AXIS OPEN CATEGORY MILLING
MACHINE TOOL38