

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Robust Channel Estimation Technique for OFDM Systems

A Thesis

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in

Electronics and Communications Engineering

Submitted by

Ahmed Hassan Eldieb

B.Sc., Electronics and Communications Engineering, SCU, 2003&master degree, AAST, 2008

Supervised By

Prof. Dr. Salwa Hussein Elramly

Electronics & Communications Engineering Department
Ain Shams University

Dr. Mona Zakaria Saleh

Electronics & Communications Engineering Department
Ain Shams University
Cairo, 2015

Examiners' Committee

Ahmed Hassan Eldieb

Name:

Thesis:	Thesis: Robust Channel Estimation Technique for OFDM Sys		
Degree:	ee: PhD; in Electronics and Communications Engineering.		
Title, Nan	ne and Affiliation	Signature	
Prof. Dr.	Hebatalla Mustafa Murad		
Cairo Unive Faculty of E Electronics	• •		
Ain Shams Faculty of E	•		
Ain Shams Faculty of E	•		
Date:	/ /2015		

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name:

Signature:

Date:

Curriculum Vitae

Name of Researcher Ahmed Hassan Eldieb

Date of Birth 10-12-1981

Place of Birth Port fouad, Port Said

First University Degree B.Sc. in Electronics and

Communications Engineering

Name of University Suez Canal University

Date of Degree 2003

Second University Degree MSc. degree in Electronics and

Communications Engineering

Name of University Arab Academy for Science, Technology

&Maritime Transport

Date of Degree 2008

ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier transmission technique in wireless environments, and can be seen as a multi-carrier digital modulation or multi-carrier digital multiplexing one as well. A large number of orthogonal sub-carriers are used to transmit information. OFDM systems have high utilization of the frequency spectrum and satisfactory capabilities of reducing multipath inference. So, OFDM has been considered as one of the core techno-logies of 4th generation (4G) wireless communication systems.

Channel estimation plays a very important role in OFDM systems. It can generally be separated into two methods: pilot-based channel estimation and blind channel estimation. Pilot-based channel estimation, which is the focus of this thesis, estimates the channel information by obtaining the impulse response from all subcarriers by pilot. Compared to blind channel estimation, which uses statistical information of the received signals and is not considered in this thesis, pilot-based channel estimation is a practical and effective method.

This thesis covers the basic principles of the OFDM system, system construction and the advantages and disadvantages of OFDM systems are considered also. It also offers a brief overview on signal propagation, channel parameters and the basic principles of channel estimation in OFDM systems.

The great challenge of channel estimation methods is to compromise between low complexity and high performance. In this thesis three improved methods of channel estimation are introduced. These methods are based on pilot-aided OFDM system with the arrangement employed in the DVB-T2 standard in time-varying frequency-selective fading channels. The first and second proposed methods (low complexity and improved low complexity methods, respectively) are modified methods based on the Domain Transform Least Square Estimation (DTLSE) method; they reduce the computational complexity by avoiding the use of the matrix inversion. The estimation matrix size for obtaining Channel Impulse Response (CIR) depends only on the length of the channel rather than the number of pilot sub-carriers or the size of OFDM symbols.

The third proposed method (high performance method) is based on a combination of the proposed low complexity method and the Two Dimensional Linear Interpolation (2-DLI) method. Similar to the previously proposed methods, the estimation matrix size for obtaining CIR depends only on the length of the channel. The three proposed methods are compared with three other methods: the DTLSE, 2-DLI and Minimum Mean Squared Error (MMSE). The first and second proposed methods prove to be less complex, with less computational load than the DTLSE and MMSE methods, and have higher robustness to Doppler shifts than the 2-DLI method. The second method also, proves to give BER performance comparable to MMSE method. The third method offers lesser complexity than the MMSE method, and a BER performance close to it and substantially better than the first proposed, DTLSE and 2-DLI methods.

Keywords:

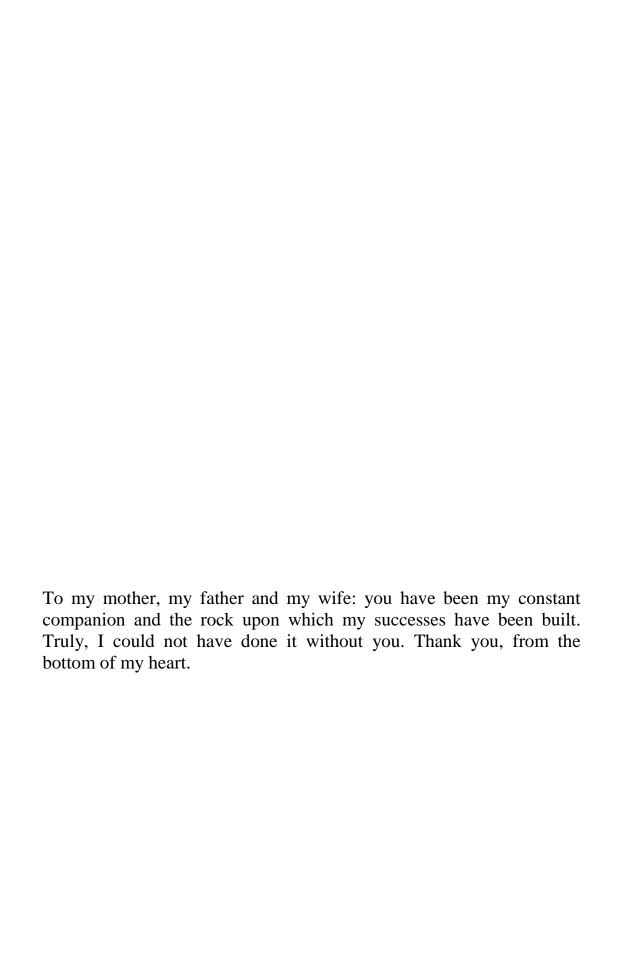
The second generation for Digital Video Broadcasting - Terrestrial system (DVB-T2) , Domain Transform Least Square Estimation (DTLSE) , Two Dimensional Linear Interpolation (2-DLI) , Minimum Mean Square Estimation (MMSE).

ACKNOWLEDGEMENT

My deepest thanks to ALLAH, for giving me the force to complete this work, and then to my advisors, Prof. Dr. Salwa Elramly and Dr. Mona Saleh, for providing the perfect supervisory environment to support my graduate studies. Their energy, drive and determination to succeed are infectious, and the positive attitude with which they have constantly supported my work has been invaluable.

Papers Extracted from this Thesis

The First Paper


Ahmed H.Eldieb, Mona Z.Saleh and Salwa Elramly, "A Comparative Study of Channel Estimation Techniques for OFDM in DVB-T2", International Journal of Computer Applications (IJCA), April 2014, Volume 91 – No.14.

The Second Paper

Ahmed H.Eldieb, Mona Z.Saleh and Salwa Elramly, "An Improved Technique of Channel Estimation for OFDM in DVB-T2", International Journal of Computer Applications (IJCA), June 2014, Volume 96 – No.16.

The Third Paper

Ahmed H.Eldieb, Mona Z.Saleh and Salwa Elramly, "A New Study of Channel Estimation Methods for OFDM in DVB-T2", submitted in, Ain Shams Engineering Journal, ASEJ, February 2015.

Contents

List of Figures	vii
List of Tables	X
List of Abbreviations	xi
List of Symbols	xiv
CHAPTER 1: Introduction	
1.1 Development and Application of OFDM	1
1.2 Needs for Channel Estimation in OFDM	2
1.3 Types of Channel Estimation in OFDM	2
1.4 Channel Estimation Techniques for Pilot-Assisted OFDM Systems	3
1.5 Structure of Thesis	3
CHAPTER 2: Orthogonal Frequency Division Multiplexing	
2.1 Introduction	5
2.2 History of Multicarrier Networks	5
2.3 Multicarrier Principle	6
2.4 OFDM Implementation.	8
2.4.1 OFDM Overview	8

2.4.2 Discrete Fourier Transform	10
2.4.3 Orthogonality in OFDM	10
2.4.4 OFDM System Model	12
2.5 OFDM Transmission over Time Varying Channels	14
2.5.1 Multipath Propagation	14
2.5.2 Guard Interval	14
2.5.3 Frequency Selective Fading	16
2.5.4 Equalization	16
2.6 Limitations in OFDM	18
2.6.1 Synchronization	18
2.6.1.1 Timing Errors	18
2.6.1.2 Carrier Phase Noise	18
2.6.1.3 Frequency Errors	18
2.7 Applications of OFDM	20
2.7.1 COFDM	20
2.7.2 ADSL	20
2.7.3 Digital Audio Broadcasting	21
2.7.4 Digital Video Broadcasting	21
2.7.4.1 The DVB-T2 Modulator Module	22
2.8 Conclusion	20

CHAPTER 3: Propagation and Fading in the Wireless Channel

3.1 Introduction	30
3.2 Radio Propagation Environment	30
3.3 Channel Parameters	31
3.3.1 Delay Spread	32
3.3.2 Doppler Shift and Doppler Spread	32
3.3.3 Coherence Bandwidth	32
3.3.4 Coherence Time	33
3.3.5 Fading (Phenomenon)	33
3.4 Fading Classification.	33
3.4.1 Large Scale Fading	36
3.4.1.1General Path Loss Model	36
3.4.1.2 Shadowing	36
3.4.2 Small-Scale Fading.	36
3.4.2.1 Parameters for Small-Scale Fading	37
3.4.2.2 Time-Dispersive vs. Frequency-Dispersive Fading	38
3.5 Channel Models in DVB-T2 Systems	41
3.5.1Gaussian Channel	41
3.5.2 Ricean Channel	41
3.5.3 Rayleigh Channel	42

3.5.4 Mobile Channel	45
3.5.5 SFN Channel	45
3.6 Conclusion.	48
CHAPTER 4: Pilot-Based Channel Estimation in OFDM System	1
4.1 Introduction.	49
4.2 OFDM Channel Estimation Techniques	49
4.2.1 Blind Channel Estimation Technique	50
4.2.1.1 Sato Algorithm	50
4.2.1.2 Constant Modulus Algorithm	51
4.2.2 Pilot-Based Channel Estimation Technique	52
4.2.2.1 Types of Pilots	52
4.3 Pilot-Based Channel Estimation Techniques	55
4.3.1 FDLSE	55
4.3.1.1 LSE Method	56
4.3.1.2 MMSE Method	58
4.3.1.3 LMMSE Method	59
4.3.1.4 2-DLI Estimation Method	60
4.3.1.5 DFT-Based Channel Estimation Method	61
4.3.2 TDLSE	63
1 3 3 DTI SE	61

4.4 Comparison between the Considered Pilot-Based	
Channel Estimation Techniques	65
4.5 Conclusion.	66
CHAPTER 5: New Proposed Methods for Channel Estimation	
5.1 Introduction	67
5.2 System Description	67
5.3 Proposed Low Complexity Method.	68
5.4 Proposed Improved Low Complexity Method	69
5.5 Proposed High Performance Method.	70
5.5.1 L-Curve Method	71
5.6 Comparison of the Computational Loads of the Considered Methods	73
5.6.1 Computational Load of the MMSE Method	73
5.6.2 Computational Load of the DTLSE Method	74
5.6.3 Computational Load of the Proposed Low Complexity Method	74
5.6.4 Computational Load of the Proposed Improved Low Complexity Method	75
5.6.5 Computational Load of the proposed High Performance Method	75
5.6.6 Comparison between the Proposed and other Methods for Different Modes in DVB-T2	76
5.7 Simulation Results for the Proposed Method	77

5.7.1 Comparison between the Proposed Methods and MM. Method in BER Performance	
Method in BER Ferrormance	
5.7.2 Results for the BER Performance of the Proposed Met	thods
for Different Pilot Patterns	87
5.8 Conclusion	94
CHAPTER 6: Conclusions &Future Work	
6.1 Conclusions.	95
6.2 Future Work	96
References	97