RESPONSE OF SOME CANOLA VARIETIES TO SALINITY TOLERANCE USING TISSUE CULTURE TECHNIQUE

By

NAHID ABDELATY ALI MORSI

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2003M.Sc. Agric. Sc. (Agronomy), Cairo University, 2010

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural Science (Agronomy)

Department of Agronomy
Faculty of Agriculture
Ain Shams University

2015

Approval Sheet

RESPONSE OF SOME CANOLA VARIETIES TO SALINITY TOLERANCE USING TISSUE CULTURE TECHNIQUE

By

NAHID ABDELATY ALI MORSI

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2003M.Sc. Agric. Sc. (Agronomy), Cairo University, 2010

This thesis for Ph.D. degree has been approved by:

Dr. Mohamed Kamal El-Bahr
Prof. Emeritus of plant Biotechnology, National Research Center
Dr. Olfat Hassan El-Bagory
Dr. Mohamed Abd El-Hamid Hamad Fergany Assistant Prof. of Agronomy, Faculty of Agriculture, Ain Shams University
Dr. Ramadan Thabet Abd Rabou Prof. Emeritus of Agronomy, Faculty of Agriculture, Ain Shams University
Date of Examination: 4 / 6 / 2015

RESPONSE OF SOME CANOLA VARIETIES TO SALINITY TOLERANCE USING TISSUE CULTURE TECHNIQUE

By

NAHID ABDELATY ALI MORSI

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2003M.Sc. Agric. Sc. (Agronomy), Cairo University, 2010

Under the supervision of:

Dr. Ramadan Thabet Abd Rabou

Prof. Emeritus of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Abd El-Hamid Hamad Fergany

Assistant Prof. of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University

Dr. Clara Reda Azzam

Head of Research, Cell Research Department (CRD), Field Crop Research Institute (FCRI), Agriculture Research Center (ARC)

ABSTRACT

Nahid Abdelaty Ali Morsi: Response of Some Canola Varieties to Salt Tolerance Using Tissue Culture Technique. Unpublished Ph.D. Thesis, Department of Agronomy, Faculty of Agriculture, Ain Shams University, 2015.

This work was carried out during 2011- 2015 in the laboratories of Cell Research Department (CRD), Field Crops Research Institute (FCRI), Agricultural Research Center (ARC), Giza, as well as, in the greenhouse of Agronomy Department, Faculty of Agriculture, Ain Shams University, Egypt, to study the variation among canola varieties in response to salt tolerance through tissue culture propagation. This work was aimed to establish a regeneration protocol for canola varieties, production of salt-tolerance plants through selection of salt-tolerance callus *via* somaclonal variation and subsequent regeneration of plantlets from such callus, identifying the genetic variations among the used varieties and the newly developed salt tolerant genotypes produced *via* somaclonal variation using RAPD and ISSR banding patterns.

Through evaluation of 22 varieties of canola, Bingo and Torpe were selected as highly salt tolerant varieties while, Conny and Siberian as susceptible varieties. Those four varieties were used for establishment a regeneration protocol. The results indicated that MS medium supplemented with 2 mg/l 2,4-D was the successive medium for callus formation and shoot regeneration was obtained from MS medium supplemented with 5 mg/l BA + 0.05 NAA, while, 1mg/l IBA was the better growth regulator for rooting.

For *in vitro* selection of salt tolerant calli, Torpe variety overcome the others in calli survival percentages under 8000, 12000 and 16000 ppm NaCl concentrations and callus of Siberian variety hold out under this concentration despite that it was within the susceptible group for salinity. The results of shoot frequency from tolerant calli cleared that Torpe variety recorded the highest value of shoot percentage followed by Bingo variety, whereas, Conny followed by Siberian varieties were recorded the lowest values. At 16000 ppm NaCl concentration only tolerant calli of Torpe variety was able to initiat shoot under this concentration. For acclamatization after regeneration from the tolerant calli only five salt tolerant plantlets developed from Torpe variety and eight salt tolerant plantlets developed from Siberian variety that succeeded to complete their life cycle and reached maturity stage and produced seeds. These regenerated genotypes were referred as T1, T2, T3, T4 and T5, the five regenerated plants developed from Torpe variety that tolerate NaCl concentration up to 16000 ppm, as well as, S1, S2, S3, S4, S5, S6, S7 and S8, the eight regenerated plants developed from Siberian variety that tolerate NaCl concentration up to 12000 ppm.

The molecular characterization of the four canola varieties and their newly developed salt tolerant genotypes were performed using RAPD and ISSR analyses.

Key Words: *Brassica napus*, canola, regeneration, *in* vitro selection, salt stress, RAPD, ISSR.

ACKNOWLEDGEMENT

Firstly, thanks for **my God Allah**, on his uncountable and infinite graces, guided and give me the ability to achieve this work.

The auther wish to express his deep thanks to **Prof. Dr. Mohamed Samy El-Habbal**, Emeritus prof. of Agron. Dept., Fac. of Agric., Ain Shams Univ., for his supervision, valuable help at the start of this work before his death.

I wish to express my deep gratitude and sincere appreciation to the supervisor **Prof. Dr. Ramadan Thabet Abd Rabou**, Emeritus prof. of Agron. Dept., Fac. of Agric., Ain Shams Univ., for his supervision, valuable guidance, continuous encouragement, sincere efforts, and helpful suggestion during the progress of this work, reviewing the thesis.

My sincere thanks, and deep grateful to **Prof. Dr. Mohamed Abd El-Hamid Hamad Fergany**, Associate prof. of Agron. Dept., Fac. of Agric., Ain Shams Univ., for his supervision, follow-up for experiments, valuable guidance and his help in reviewing the thesis.

My great sincere thanks and appreciation to **Prof. Dr. Clara Reda Azzam**, Head of Cell Research Dept., Field Crop Research Institute, Agric. Research Center for her kind supervision, fruitful help, patience, continuous encouragement, and her great assistance in this study and writing and reviewing the thesis.

Thanks are also extended to all **staff members of Cell Research Dept**, Field Crops Research Institute, Agric. Research Center for their interest and kind help during this work.

Finally, I am indebted as a gift to my mother, my sisters as well as my husband **Dr. Mohamed El-Temsah**, Lecturer of Agron. Dept., Fac. of Agric., Ain Shams Univ. and my sons for their continuous encouragement, helping me and praying for me.

CONTENTS

Title	Page
LIST OF TABLES	
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Seedling selection under salinity	5
2. Establish tissue culture system in canola	10
3. In vitro selection of salt tolerant	
canola	31
4. Molecular Markers and Marker-assisted	
selection	35
4.1. Molecular markers using RAPD-PCR	35
4.2. Molecular markers using ISSR-PCR	52
MATERIALS AND METHODS	55
1. Plant materials	55
2. Selection of the highest and lowest salt tolerant canola varieties	55
3. Establishment of canola regeneration protocol	57
3.1. Seed sterilization and germination	57
3.2. Callus induction	58
3.3. Regeneration potential	59
3.4. Root formation	60
3.5. Plant acclimatization	61
4. In vitro selection of salt tolerant calli	61
5. Molecular characterization of salt tolerant regenerates	63

5.1. Randomly amplified polymorphic DNA (RAPD) 5.2. DNA Inter Simple Sequence Repeats of the polymerase chain	63
reaction (ISSR-PCR)	66
RESULTS AND DISCUSSION	69
1. Seedling selection under salinity	69
1.1. Germination percentage (G%)	69
1.2. Germination velocity (GV%)	72
1.3. Germination rate (GR)	74
2. Establishment of canola regeneration protocol	76
2.1. Callus formation	76 76
2.1.1. Callus initiation from cotyledon explants	70
2.1.2. Callus initiation from hypocotyl explants	
2.2. Shoot regeneration	78
2.3. Root formation	82 87
3. In vitro selection of salt tolerate calli	89
3.1. Callus survival percentage	89
3.2. Shoot frequency from tolerant calli	91
4. Plant acclimatization	96
5. Molecular analysis	102
5.1. RAPD analyses	102
5.1.1. Genetic similarity and cluster analysis based on RAPD data.	111
5.2. ISSR analyses	116
5.2.1. Genetic similarity and cluster analysis based on ISSR data	125
5.3. Genetic similarity and cluster analysis based on RAPD and	
ISSR combined data	129
SUMMARY	132
REFERENCES	139

LIST OF TABLES

Γable No.	Title	Page
Table 1.	Canola genotypes used in this study and their origin.	56
Table 2.	Components of Murashige and Skoog (1962) medium.	59
Table 3.	List of used RAPD primer names and their nucleotide sequences.	65
Table 4.	Names and sequences for the 15 ISSRs primers.	67
Table 5.	Comparison between magnitudes of variability CV% before and after transformation.	69
Table 6.	Effect of NaCl concentrations, varieties and their interaction on germination percentage.	70
Table 7.	Effect of NaCl concentrations, varieties and their interactions on germination velocity (%).	73
Table 8.	Effect of NaCl concentrations, varieties and their interactions on germination rate.	75
Table 9.	Effect of cotyledon explant and different media on	78

callus	initiation	of four	canola	genotypes.
Cullub	minumu	OI IOUI	cuiloiu	CITOC, DOD.

Table 10.	Effect of hypocotyl explant and different media on callus initiation of four canola genotypes.	80
Table 11.	Mean regenerated shoots from callus of the four canola genotypes cultured on MS-medium supplemented with four combinations of growth regulators.	84
Table 12.	Root formation on the shoot 45-days of the four canola genotypes cultured on three different MS-medium.	89
Table 13.	Callus survival of the four canola varieties under different NaCl concentrations after two weeks of culturing.	91
Table 14.	Shoot frequency obtained from the select salt tolerant calli of the four canola varieties under different NaCl concentrations after four weeks of culturing.	92
Table 15.	Yield and yield components for cultured producing genotypes of Torpe and Siberian varieties.	98
Table 16.	DNA polymorphism of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer OP- A11.	103
Table 17.	DNA polymorphism of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer OP-A15.	104
Table 18.	DNA polymorphism of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer OP-C01.	106
Table 19.	DNA polymorphism of the four canola varieties and thirteen regenerates at R ₁ generation amplified with primer OP-C07.	107
	•	107

Table 20.	DNA polymorphism of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer OP-C17.	109
Table 21.	Total number of bands (Monomorphic and Polymorphic), Polymorphism percentages revealed by five RAPD primers for the four canola varieties and thirteen regenerates at R_1 generation.	110
Table 22.	Similarity value (Pairwise comparison) of the four canola variety and the thirteen newly developed regenerates based on RAPD data.	113
Table 23.	DNA polymorphism of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-10.	116
Table 24.	DNA polymorphism of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-11.	117
Table 25.	DNA polymorphism of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-12.	119
Table 26.	DNA polymorphism of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-13.	120
Table 27.	DNA polymorphism of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-14.	122
Table 28.	Total number of bands (Monomorphic and Polymorphic), Polymorphism percentages revealed by five ISSR primers for the four canola varieties and thirteen regenerates at R_1 generation.	123
Table 29.	Similarity value (Pairwise comparison) of the four canola variety and the thirteen newly developed regenerates based on ISSR data.	126

Table 30. Similarity value (Pairwise comparison) of the four canola variety and the thirteen newly developed regenerates based on RAPD and ISSR data.

129

LIST OF FIGURES

Fig.No.	Title	Page
Fig. 1.	Germination of twenty two studied varieties under the different NaCl concentration.	76
Fig. 2.	Callus initiation from cotyledon explants of four canola varieties cultured at 21-days on MS-medium supplemented with 2 mg/l 2,4-D.	79
Fig. 3.	Increasing of cotyledon explants in size with burning the edges for four varieties on control medium 21-days.	79
Fig. 4.	Increasing of cotyledon explants in size with burning the edges for four varieties 21-days on control medium.	81
Fig. 5.	Shoot formation from calli of the four canola varieties cultured 45-days on MS-medium supplemented with 5 mg/l BA \pm 0.05 NAA.	83

Fig. 6.	Root formation on shoot of canola varieties cultured 45-days on MS-medium supplemented with 1 mg/l IBA.	88
Fig. 7.	Salt tolerant calli developed from Bingo variety (A) and initiated shoot (B) at 12000 ppm NaCl concentration, death of Bingo calli at 16000 ppm NaCl (C).	93
Fig. 8.	Salt tolerant calli developed from Torpe variety (A) and initiated shoot (B) at 12000 ppm NaCl, salt tolerant calli developed from Torpe variety (C) and initiated shoot (D) at 16000 ppm NaCl concentration.	
		94
Fig. 9.	Salt tolerant Calli developed from Siberian variety (A) and initiated shoot (B) at 12000 ppm NaCl, death of Siberian calli at 16000 ppm NaCl (C) concentration.	95
Fig. 10.	Salt tolerant Calli developed from Conny variety (A) at 12000 ppm NaCl, death of Conny calli at 16000 ppm NaCl concentration (B).	
		96
Fig. 11.	Canola regenerated plantlets at different ages during the acclimatization process.	99
Fig. 12.	Torpe genotypes at flowering stage.	100
Fig. 13.	Torpe genotypes at harvesting stage.	100
Fig. 14.	Siberian genotypes at flowering stage.	101
Fig. 15.	Siberian genotypes at harvesting stage.	101
Fig. 16.	RAPD-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer OP- A11.	102

Fig. 17.	RAPD-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer OP-A15.	104
Fig. 18.	RAPD-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer OP-C01.	105
Fig. 19.	RAPD-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer OP-C07.	107
Fig. 20.	RAPD-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer OP-C17.	108
Fig. 21.	A dendrogram illustrates the genetic distance among the four canola variety and the thirteen newly developed regenerates based on RAPD data.	114
Fig. 22.	ISSR-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-10.	115
Fig. 23.	ISSR-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-11.	117
Fig. 24.	ISSR-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-12.	118
Fig. 25.	ISSR-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-13.	120
Fig. 26.	ISSR-banding pattern of the four canola varieties and thirteen regenerates at R_1 generation amplified with primer HB-14.	121
Fig. 27.	A dendrogram illustrates the genetic distance among the four canola variety and the thirteen newly	127

developed regenerates based on ISSR data.

Fig. 28. A dendrogram illustrates the genetic distance among the four canola variety and the thirteen newly developed regenerates based on RAPD and ISSR data.

130

LIST OF ABBREVIATION

2,4-D	2,4-Dichlorophenoxy acetic acid
BA	Benzyl Adenine
BAP	Benzyl Amino Purin
IAA	Indole Acetic Acid
NAA	Naphthalene Acetic Acid
AgNo3	Silver Nitrate
AVG	Aminoethoxyvinylglycine
ACC	1-Amino-Cyclopropane-1-Carboxylic acid
RFLP	Restriction Fragment Length Polymorphism
RAPD	Randomly Amplified Polymorphic DNA