A study on the relationship between parameters of renal osteodystrophy and the development of peripheral and aortic vascular calcification in chronic renal failure patients

Thesis

Submitted for partial fulfillment of Master Degree In Internal Medicine

By Fadia Moris Bolis M.B.B.Ch

Cairo University

Supervised by Professor Dr/ Tarek Mahmoud Hussein Elshabony

Professor of Internal Medicine and Nephrology Faculty of medicine - Cairo University

Professor Dr/ Dr.Mohamed NasrAllah

Assistant Prof. of Internal Medicine and Nephrology Faculty of medicine - Cairo University

Professor Dr/ Amal Rashad ELShehaby

Assistant Prof. of Biochemistry Faculty of medicine - Cairo University

Faculty of Medicine-Cairo University 2012

To my great Parents,

(Two true gems in my life)

To my great brother Fady

And

To my dear husband Akram

Abstract

Background and aims:

Hemodialysis (HD) patients belong to the group of patients with a high prevalence of cardiovascular disease. Atherosclerosis is the most frequent cause of cardiovascular morbidity in patients with end-stage renal disease (ESRD). There is a high prevalence of vascular calcification among ESRD patients on hemodialysis and this is correlated to the presence of preexisting cardiovascular disease.

The aim of the present study was to test the correlation between various calcification scores and cardiovascular morbidity in patients with end stage renal disease on dialysis.

Subjects and methods:

91 ESRD patients on regular hemodialysis at Kasr ElAini Hemodialysis Unit and Kasr ElAini Nephro-Urology Unit (King Fahd Unit) were recruited to participate in the study in observational period 18 months. The included patients were 44 males and 47 females . Patients below age 18 years and pregnant women were excluded.

All subjects incorporated in the study were evaluated thoroughly by history taking, clinical examination and routine laboratory investigations for hemodialysis patients. Vascular calcification was assessed by non-contrast CT abdomen ,lateral lumbar x ray and x rays of both hands and pelvis.

Results:

We found a high prevalence of vascular calcification using six different radiological scores among ESRD patients on hemodialysis which increased progressively from proximal to distal along the abdominal aorta. This prevalence was higher in our study when measured by CT compared to plain X rays. Frequency distribution of vascular calcification by CT thorax score was 24.3%, CT suprarenal score was 33.7%, CT infrarenal score was 47.2%, CT bifurcation score was 42.3%, Kauppila score was 24.4%, and by Adraogo score was 34.1%.

We also found a positive correlation between calcification scores and diabetes mellitus, age and other factors correlating to the presence of vascular calcification including phosphate level, triglycerides, parathyroid hormone and dialysis adequacy as measured by kt/v urea.

We also found that cardiovascular disease in our study population was correlated in logistic regression analysis with age (P value = 0.001) and BMI (P value = 0.02) and negatively correlated with Kt/v urea (P value = 0.006).

We also found that vascular calcification scores were also correlated positively with the presence of cardiovascular disease.

4 Conclusions:

There is a high prevalence of vascular calcification among hemodialysis patients and this is more readily predicted by CT based technique. This vascular calcification correlated positively with the presence of pre-existing cardiovascular disease.

Key words: Chronic kidney disease-Cardiovascular disease-Vascular calcification.

Table of contents

		Page	
•	Acknowledgment	4	
•	List of tables		
•	List of figures	8	
•	List of abbreviations	11	
•	Introduction and aim of the work	16	
•	Review of literature:		
	o Chapter 1: Cardiovascular diseases in chronic renal failure patients.	18	
	Introduction:	18	
	 Epidemiology of cardiovascular disease in chronic kidney 	19	
	disease		
	 Risk factors for cardiovascular disease In chronic kidney disease 	23	
	patients Manifestations of CVD	52	
	o Chapter 2: Vascular calcification in chronic renal failure patients.	90	
	 Definition of vascular calcification 	90	
	 Prevalence of vascular calcification 	90	
	 Pathogenesis and mechanism of vascular calcification 	92	
	 Detection of vascular calcification 	106	
	 Prevention and treatment of vascular calcification 	123	
•	Patients and methods	130	
•	Results	135	
•	Discussion	160	
•	Conclusion	165	
•	Recommendations	167	
•	References	168	
•	اللخص العربي	212	

First, thanks are all due to **Allah** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

It was an honor to work under the supervision of professor Dr. Tarek Mahmoud Hussein Elshabony, professor of Internal medicine and Nephrology-, Cairo University. I would like to express my deepest thanks and graditude to him for his kind supervision and for his continuous encouragement and guidance. He offered me much of his kind advises and scarified much of his precious time to complete this work.

It was also an honor to work under the supervision of professor Dr. Mohamed NasrAllah, assisstant professor of Internal medicine and Nephrology-Cairo University, whom I would also like to express my thanks and appreciation for his honest support and guidance for me in every step of this work Neither did he save his effort nor his time for accomplishment of this work.

I would also like to express my sincere thanks to Professor Dr Amal Rashad ElShehaby, assisstant professor of biochemistry-Cairo University, for doing laboratory work up of this study and for his great cooperation, assistance and efforts during the whole work.

I would like to express my highest appreciation to Dr.Amr nasef, Professor of radiodiagnosis, Cairo University, for his great cooperation and efforts during the whole work without which, it wouldn't have been a reality.

My special thanks to my father, my mother, my brother and my husband Akram. Their care, love, and generosity can never be sufficiently acknowledged.

Fadia Moris Bolis

List of tables

•	Table 1.1	Risk factors for cardiovascular diseases in chronic	24
		kidney disease patients.	
•	Table 1.2	Direct or Indirect Consequences of Elevated	48
		Serum Phosphorus.	
•	Table 1.3	Cardiovascular Diseases in Chronic Kidney Disease	54
•	Table 2.1	Inhibitors of vascular calcification.	103
•	Tables	Master tables of all patients included in the study.	136-141
	4.1/4.2		
•	Table 4.3	Descriptive statistics of demographic and laboratory	142
		data of patients included in the study.	
•	Table 4.4	Frequency distribution of clinical data of patients	144
		included in the study.	
•	Table 4.5	Frequency distribution of treatment of patients	144
		included in the study.	
•	Table 4.6	Descriptive statistics of CT thorax, CT suprarenal,	145
		CT infrarenal Kauppila Score, Adragao score and	
		bifurcation score of patients included in the study.	
•	Table 4.7	Correlation between CT thorax, CT suprarenal, CT	146
	100010	infrarenal, Kauppila Score, Adragao score and	
		bifurcation score.	
•	Table 4.8	Correlation between demographic data with CT	149
		thorax, CT suprarenal, CT infrarenal, Kauppila score,	
		Adragao score and bifurcation score.	
•	Table 4.9	Correlation between demographic and laboratory data with CT thorax, CT suprarenal, CT infrarenal, Kauppila Score, Adragao score and bifurcation score.	150

•	Table 4.10	Comparison between demographic data of patients	151
		included in the study in relation to cardiovascular	
		disease.	
•	Table 4.11	Comparison between CVD of patients included in the	151
		study in relation to intradialytic hypotension.	
•	Table 4.12	Comparison between laboratory data of patients	151
		included in the study in relation to cardiovascular	
		disease.	
•	Table 4.13	Logestic regression for detection of risk factor of	155
		CVD of patients included in the study.	
•	Table 4.14	Logistic regression for detection of risk factor of CT	156
		thorax of patients included in the study.	
•	Table 4.15	Logistic regression for detection of risk factor of CT	156
		suprarenal of patients included in the study.	
•	Table 4.16	Logistic regression for detection of risk factor of CT	157
		infrarenal of patients included in the study.	
•	Table 4.17	Logistic regression for detection of risk factor of	158
		bifurcation of patients included in the study.	
•	Table 4.18	Logistic regression for detection of risk factor of	158
		kauppila score of patients included in the study.	
•	Table 4.19	Logestic regression for detection of risk factor of	159
		adragao score of patients included in the study.	

List of figures

•	Fig. 1.1	Distribution of the causes of death in patients with ESRD.	19
•	Fig. 1.2	Increased incidence of mortality in CKD patients after	20
		myocardial infarction, PCI.	
•	Fig. 1.3	Cardiovascular mortality in general population and dialysis	21
		population.	
•	Fig. 1.4	Influence of GFR on cardiovascular outcomes.	22
•	Fig. 1.5	Schematic presentation of traditional and novel (or uremia-	25
		specific cardiovascular risk factors in chronic kidney	
		disease.	
•	Fig. 1.6	Risk Factors for SCD in dialysis patients.	83
•	Fig. 2.1	In CKD media calcification is accelerated and	92
		superimposed to intimal calcification.	
•	Fig. 2.2	Calcified coronary atherosclerotic plaque of a patient with	92
		chronic renal failure.	
•	Fig. 2.3	The mechanism of vascular calcification.	94
•	Fig. 2.4	Proposed mechanism of vascular calcification in CKD.	96
•	Fig. 2.5	Fibroblast growth factor 23 (FGF23).	97
•	Fig. 2.6	Cardiac valve calcification prevalence.	107
•	Fig. 2.7	Valvular calcification is associated with lower survival.	108
•	Fig. 2.8	Association between valvular calcification of either	109
		cardiac valve and coronary artery calcification.	
•	Fig. 2.9	Vascular calcification predicts valvular calcification in	110
		dialysis patients.	
•	Fig. 2.10	Arterial calcification increases mortality risk.	112
•	Fig. 2.11	Relationship between severity of renal dysfunction and	114
		CAC assessed by EBCT.	

•	Fig. 2.12	Coronary artery calcification detected by EBCT and	115
		survival in ESRD.	
•	Fig. 2.13	CT abdomen detect aortic calcification in CRF patients.	116
•	Fig. 2.14	CT scan of intense calcification in coronary arteries in	116
		dialysis patient.	
•	Fig.2.15	Example of lateral lumbar X-ray showing calcification of	118
		the anterior and posterior wall of the abdominal aorta.	
•	Fig. 2.16	Simple vascular calcification score in plain x ray.	119
•	Fig. 2.17	Vascular calcification was associated with arterial	121
		stiffness.	
•	Fig. 2.18	Higher pulse wave velocity ,pulse pressure associated with	121
		lower survival.	
•	Fig. 2.19	Effect of different phosphate binders on Coronary Artery	124
		calcification progression.	
•	Fig. 3.1	ACI measurement.	132
•	Fig. 3.2	lateral lumbar X-ray showing calcification of the anterio	133
		and posterior wall of the abdominal aorta	
•	Fig. 3.3	Evaluation of vascular calcification score in plain	134
		radiographic films of pelvis and hands.	
•	Fig. 4.1	Frequency distribution of CT thorax , CT suprarenal , CT	145
		infrarenal, Kaupilla score, adragao score and bifurcaton.	
•	Fig. 4.2	Correlation between CT thorax and IHD of patients	146
		included in the study.	
•	Fig. 4.3	Correlation between CT suprarenal and IHD of patients	147
		included in the study.	
•	Fig. 4.4	Correlation between CT infrarenal and IHD of patients	147
		included in the study.	
•	Fig. 4.5	Correlation between CT bifurcation and IHD of patients	148

		included in the study.	
•	Fig. 4.6	Correlation between CT Kauppila score and IHD of	148
		patients incuded in the study.	
•	Fig. 4.7	Correlation between CT Adragao score and IHD of	149
		patients included in the study.	
•	Fig. 4.7★	Comparison between CT thorax of patients included in the	152
		study in relation to cardiovascular disease.	
•	Fig. 4.8	Comparison between CT suprarenal of patients included in	152
		the study in relation to cardiovascular disease	
•	Fig. 4.9	Comparison between CT infrarenal of patients included in	153
		the study in relation to cardiovascular disease.	
•	Fig. 4.10	Comparison between kauppila score of patients included in	153
		the study in relation to cardiovascular disease.	
•	Fig. 4.11	Comparison between Adragao score of patients included in	154
		the study in relation to cardiovascular disease.	
•	Fig. 4.12	Comparison between bifurcation score of patients included	154
		in the study in relation to cardiovascular disease.	

List of abbreviations

AACS Abdominal Aorta Calcification score

AB Apoptotic bodies

ABI Ankle-brachial index

ACC American College of Cardiology

ACEi Angiotensin converting enzyme inhibitor

ACI Aortic calcification index

ADMA Asymmetric dimethylarginine

AF Atrial fibrillation

A.G.E Advanced glycation end products

AHA American Heart Association

ALP Alkaline phosphatase

AMI Acute myocardial infarction

AngII Angiotensin II

ANP Atrial natriuretic peptide

AoAC Aortic arch calcification score

AOPPs Advanced oxidation protein products

AVC Aortic valve calcification

AVG Arteriovenous grafts

BCP Bony calcium phosphate

BNP Brain natriuretic peptide

CAC Coronary artery calcium scores

CAD Coronary artery disease

CAPD continuous ambulatory peritoneal dialysis

Cbfa1 Core-binding factor 1alpha

CETP Cholesteryl ester transfer protein

CHD Coronary heart disease

CKD Chronic kidney disease

CO Cardiac output

CRP C-reactive protein

CVD Cardiovascular disease

CVSSC Cardiovascular Special Studies Center

DCOR Dialysis Clinical Outcomes Revisited

DDAH Dimethylarginine dimethylaminohydrolase.

EBCT Electron beam computed tomography

ECSOD Extracellular- superoxide dismutase

E.D Endothelial dysfunction

eNOS Endothelial NO synthase

ESRD End-stage renal disease

FFA Free fatty acid

FGF23 Fibroblast growth factor 23

Fig. Figure

GFR Glomerular filtration rate

Hb Haemoglobin

HbA1c Glycated hemoglobin

HD Hemodialysis

HDL High density lipoprotein

HF Heart failure

HOMA Homeostasis model assessment method

HSMC Human Smooth muscle cell

HTN Hypertension.

ICAM Intercellular adhesion molecule.

ICD Implantable cardioverter-defibrillator

IDDM Insulin dependent diabetes mellitus

IE Infective endocarditis

IHD Ischemic heart disease

IL Interleukin

IVUS Intravascular ultrasound

KEEP Kidney Early Evaluation Program

LAV Left atrial volume

LDL Low density lipoprotein

Lp(a) Lipoprotein(a)

LVH Left ventricular hypertrophy

LVMI Left ventricular mass index

MAC Mitral annular calcification

MDA Malondialdehyde

MetS Metabolic syndrome.

MGP Matrix Gla protein

MI Myocardial infarction

MPO Myeloperoxidase

MRA Magnetic resonance angiography

MSCT Multislice computed tomography

MV Microvesicles

MWFS Midwall fractional shortening

NCBPs Nitrogen-containing bisphosphonates

NO Nitric oxide

NT-pro-BNP N-terminal pro-brain natriuretic peptide

OPBs Calcium-based oral phosphate binders

OPG Osteoprotegerin

OPN Osteopontin

 $O_{2^{T}}$ Superoxide anion radical

OxLDL Oxidized LDL

PAD Peripheral arterial disease