EFFECT OF FERMENTED SOYBEAN MEAL AS MAIN PROTEIN SOURCE ON GROWTH OF FISH FED NON-FISH MEAL DIETS

By

ALAA SAID HASSAN MOHAMED

B.Sc. Agric. Sc. (Animal Production and Fish resources), Suez Canal Univ, 2010

A Thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Sciences
(Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

2017

Approval Sheet

EFFECT OF FERMENTED SOYBEAN MEAL AS MAIN PROTEIN SOURCE ON GROWTH OF FISH FED NON-FISH MEAL DIETS

By

ALAA SAID HASSAN MOHAMED

B.Sc. Agric. Sc. (Animal Production and Fish resources), Suez Canal Univ, 2010

This thesis for M.Sc. degree has been approved by:
Dr. Deyab Mohammed Saad Deyab El-Saidy
Prof. of Fish Nutrition, Faculty of Agriculture, Monofia University.
Dr. Mohamed Fathy Mohamed Osman
Prof Emeritus. of Fish Nutrition, Faculty of Agriculture, Ain Shams University.
Dr.Ashraf Youssef Ibrahim El-Dakar
Prof. of Fish nutrition, Faculty of Fish Resources, Suez University.
Dr. Amin Abd El-Mouaty El-Gamal
Prof Emeritus. of Fish Production, Faculty of Agriculture, Ain Shams University.

Date of Examination: / / 2017

EFFECT OF FERMENTED SOYBEAN MEAL AS MAIN PROTEIN SOURCE ON GROWTH OF FISH FED NON-FISH MEAL DIETS

By

ALAA SAID HASSAN MOHAMED

B.Sc. Agric. Sc. (Animal Production and Fish resources), Suez Canal Univ, 2010

Under the supervision of:

Dr. Amin Abd El-Mouaty El-Gamal

Prof Emeritus. of Fish Production, Animal Production Department, Faculty of Agriculture, Ain Shams University. (principal supervisor)

Dr. Mohammed Abdel-baky Amer

Associate Prof. of Fish Physiology, Animal Production Department, Faculty of Agriculture, Ain Shams University.

Dr. Ashraf Youssef Ibrahim El-Dakar

Prof. of Fish Nutrition, Aquaculture Department, Faculty of Fish Resources, Suez University.

ABSTRACT

Alaa Said Hassan Mohamed EL-karargey. Effect of Fermented Soybean Meal as Main Protein Source on Growth of Fish Fed Non-Fish Meal Diets. Unpublished M.Sc., Thesis, Animal Production Department, Faculty of Agriculture, Ain Shams University, 2017.

The present work was conducted in fish nutrition lab, Faculty of Fish Resources, Suez University, Suez, Egypt, to investigate the effect of fermented soybean meal on the growth, feed utilization, hematological blood parameters and histological section for liver and intestine of Nile tilapia *Oreochromis niloticus*.

Commercial soybean meal (44% CP) was fermented with *Bacillus subtilis* ATCC35854 using the solid-state fermentation technology. Bacteria fermentation increased the crude protein content of soybean meal by 6 % after solid-state fermentation the total amino acid of fermented soybean meal increased by 19.66% compared to soybean meal.

Five isonitrogenous (25% protein and isocaloric 4.4Kcal/g gross energy) practical diets were formulated as a replacement of fish meal by fermented soybean meal with *B.subtilis*. The first is the control diet which contained 15% fish meal. In the other three diets, fish meal was replaced by fermented soybean meal at levels of 33, 66 and 100%, respectively and the final diet contain 100% soybean meal without any treatment. Each diet was fed to three replicate groups of fish with an initial weight 10.±0.1 g for 98 days, represent the first experiment.

The best final body weight (BW), weight gain(WG), specific growth rate (SGR), protein efficiency ratio (PER) and protein productive value (PPV) were recorded by fish fed fish meal diet (control diet) followed by fish fed fish meal was replaced with fermented soybean meal at level of 33% (D-33FSBM).

Best approximate analysis for body protein and ash contents tended to be higher in control diet and (D-33FSBM). And lower in lipid content

compared to fish fed other diets. No significant different in Hematology blood parameters of fish fed different diets.

Morphological abnormalities in the distal intestine observed in fish fed SBM diet were moderately improved in fish fed control diet and (D-33FSBM) and were not observed in fish fed (D-66FSBM) and (D-100 FSBM diets. Morphological abnormalities in the liver of fish fed SBM diet were also improved in (D-33FSBM) diet groups.

In the second experiment five isonitrogenous (25% protein and isocaloric 4.4 Kcal/g gross energy) practical diets were formulated as fish meal free diets. The first contained 12% fish meal , the second diet fish meal was replaced with fermented soybean meal , the thired diet fish meal was replaced with fermented soybean meal and corn gluten, the fourth diet fish meal was replaced with fermented soybean meal and methionine , the fifth diet fish meal was replaced with fermented soybean meal, corn gluten and methionine. Each diet was fed to three replicate groups of fish with an initial weight 10.±0.1 g for 98 days.

The best final body weight (BW), weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER) and protein productive value (PPV) were recorded by fish fed fish meal diet (control diet) followed by fish fed mixed plant protein diet (FSBM+CG+M).

Best approximate analysis for body protein and ash contents tended to be higher in control diet and followed by fish fed mixed plant protein diet (FSBM+CG+M).. And lower in lipid content compared to fish fed other diets. No significant different in Hematology blood parameters of Nile tilapia fed different fish meal free diets.

Morphological abnormalities in the distal intestine observed in fish fed dish meal free diets were moderately improved in fish fed mixed plant protein diet (fermentend soyabean meal, corn gluten and methionine and were not observed in fish fed athor fiah meal free diets. Morphological abnormalities in the liver of fish fed fish meal free diet were also improved fish fed mixeid plant protein diet (fermentend soyabean meal, corn gluten and methionine.

These results indicate that fermentation of soybean meal under appropriate conditions is beneficial for preventing various physiological abnormalities that occur in Nile tilapia fed soybean meal. We conclude that properly fermented soybean meal is a promising ingredient as the main protein source in a non-fish meal diet for Nile tilapia.

Key words:- fish meal free diet - soybean meal - growth performance - *Oreochromis niloticus*.

ACKNOWLEDGEMENT

First and foremost, I would like to give praise to **Almighty ALLAH.** By the grace of **Almighty ALLAH**, this work has completed.

Thank for *Prof. Ashraf Youssef Ibrahim El-Dakar*, Professor of Fish Nutrition, Aquaculture Department, Faculty of Fish Resources, Suez University for the opportunity to work on this research, for his guidance, help, and support during the entire degree program.

I am grateful to *Prof. Amin Abd El-Mouaty El-Gamal* Prof. Emeritus of Fish Production, Animal Production Department, Faculty of Agriculture, Ain Shams University for his serious effort, encouragement and discussions, that were so essential for my work.

I would also like to express my deepest thanks to *Dr. Mohammed Abdel–baky Amer* Associate Prof. of Fish Physiology, Animal Production Department, Faculty of Agriculture, Ain Shams University. for giving me a chance to be open-minded, for cooperation, scholarly suggestions and constructive criticism.

I owe a big favor to *Prof. Shymaa Shalabe*, Professor of Fish Nutrition, Aquaculture Department, Faculty of Fish Resources, Suez University, for helping and facilitating the requirements of this work and for her valuable guidance.

CONTENTS

	Page
LIST OF TABLES	Iv
LIST OF FIGURES	V
INTRODCUTION	1
REVIEW OF LITERATURES	4
2.1. Aquaculture in Egypt	4
2.2. The need for replacement of fish meal	5
2.3. Plant proteins sources	5
2.3.1. Soybean meal	6
2.3.2. Corn	8
2.3.3. Sunflower meal	9
2.3.4. Linseed meal	10
2.3.5. Canola meal	11
2.3.6. Sesame	12
2.4. Anti – nutritional factors in plant proteins sources	13
2.4.1. Saponins	14
2.4.2. Tannins	15
2.4.3. Toxic amino acids	16
2.4.3.1. Mimosine	16
2.4.3.2. Canavanine	16
2.4.3.3. Dihydroxyphenylalanine	16
2.4.4. Anti-enzymes	17
2.4.5. Anti-vitamin factors	17
2.4.6. Cyanogens	17
2.4.7. Cyclopropenoic fatty acids	18
2.4.8. Erucic acid	18
2.4.9. Estrogenic factors	18
2.4.10. Glucosinolates	19
2.4.11. Gossypol	20
2.4.12. Haemagglutinins (lectins)	20

2.4.13. Lathyrogens	21
2.4.14. Mycotoxins	21
2.4.15. Protease/trypsin inhibitors	22
2.5. Effects of different processing methods on the anti – nutrition	23
factors.	
2.5.1. Gamma irradiation.	23
2.5.2. Soaking	23
2.5.3. Cooking treatments	24
2.5.4. Germination	26
2.5.5. Blaching	27
2.5.6. Extrusion	27
2.5.7. Roasting	28
2.5.8. Boiling	28
2.5.9. Fermentation	29
2.5.9.1. The different between solid- state fermentation and liquid	30
fermentation	
2.6. Solid-state fermentation (SSF)	31
2.6.1. Fungi	32
2.6.2. Bacteria	33
MATERIALS AND METHODS	34
3.1. Micro-organisms	34
3.1.1. Bacterial strains and medium	34
3.2. Solid- state fermentation of soya beans meal	34
3.3. Determination of amino acids	34
3.4. The 1 st Experiment	35
3.4.1. Feed formulation and pellet preparation	35
3.5. The 2 nd Experiment	37
3.5.1. Feed formulation and pellet prepration	37
3.6. Fish and experimental condition	39
3.7. Chemical analysis	40
3.8. Growth performance	40
3.9. Biological parameters	41

3.10. Biochemical analysis of blood samples	41
3.11. Histological examinations of liver and intestine	42
3.12. Statistical analysis	43
RESULTS AND DISCUSSION	44
4.1. Identification of <i>Bacillus subtilis</i> strain	44
4.2. Chemical composition of commercial soybean meal	44
(CSBM) and fermented soybean meal (FSBM) with <i>B. subtilis</i> .	
4.3. Amino acid content of commercial soybean meal and	16
fermented soybean meal	46
4.4. The 1 st Experiment	49
4.4.1. Growth performance of Nile tilapia affected by	49
replacement of fish meal by fermented soybean meal with	
B.subtilis.	
4.4.1.1. Body weight	49
4.4.1.2. Body length	49
4.4.1.3. Condition factor	50
4.4.1.4. Weight gain and specific growth rate	52
4.4.2. Feed utilization of Nile tilapia as affected by replacement	54
of fish meal by fermented soy bean with B. subtilis.	
4.4.2.1. Feed intake(FI)	54
4.4.2.2. Feed Conversion Ratio (FRC)	55
4.4.2.3. Protein Efficiency Ratio (PER)	55
4.4.2.4. Protein Productive Value (PPV)	55
4.4.3. Proximate analysis of Nile tilapia as affected by	
replacement of fish meal by Bacillus subtilis fermented soy	57
bean meal.	
4.4.4. Biological parameters of Nile tilapia as affected by	
replacement of fish meal by Bacillus subtilis fermented soy bean	59
meal.	
4.4.5. Hematology blood parameters of Nile tilapia as affected	
by replacement of fish meal by Bacillus subtilis fermented soy	61
bean meal.	

4.4.6. Histological section of liver and intestine of Nile tilapia as	
affected by replacement of fish meal by Bacillus subtilis	64
fermented soy bean meal.	
4.4.6.1. Histological section of liver	64
4.4.6.2. Histological section of intestine	66
4.5. The 2 nd Experiment	68
4.5.1. Amino acid content of fish meal and corn gluten	68
4.5.2. Growth performance of Nile tilapia affected by	
feeding different fish meal free diets with using fermented	69
soybean meal by B. subtilis.	
4.5.2.1. Body weight	69
4.5.2.2. Body length	69
4.5.2.3. Condition factor	69
4.5.2.4. Weight gain and specific growth rate	72
4.5.3. Feed utilization of Nile tilapia as affected by feeding	
different fish meal free diets with using fermented soybean meal	75
by B.subtilis.	
4.5.3.1. Feed intake(FI)	75
4.5.3.2. Feed Conversion Ratio (FRC)	75
4.5.3.3. Protein Efficiency Ratio (PER)	76
4.5.3.4. Protein Productive Value (PPV)	76
4.5.4. Proximate analysis of Nile tilapia as affected by feeding	
different fish meal free diets with using fermented soybean meal	78
by B.subtilis	
4.5.5. Biologial parameters of Nile tilapia as affected by feeding	
different fish meal free diets with using fermented soybean meal	81
by B.subtilis.	
4.5.6. Hematology blood parameters of Nile tilapia as affected	
by feeding different fish meal free diets with using fermented	83
soybean meal by B. subtilis.	
4.5.7. Histological section of liver and intestine of Nile tilapia as	85
affected by feeding different fish meal free diets with using	0.5

fermented soybean meal by B. subtilis.	
4.5.7.1. Histological section of liver	85
4.5.7.2. Histological section of intestine	87
SUMMARY AND CONCULUSION	89
REFERANCES	92
ARABIC SUMMARY	

LIST OF TABLES

Table (1)	CODEX definitions for the classes of soy proteins	7
Table (2)	Comparison of solid-state fermentation with liquid fermentation	30
Table (3)	Studies of solid-state fermentation using different microorganisms (fungi) and solid supports	32
Table (4)	Proximate composition of the experimental diets (g/ kg diet).	36
Table (5)	Proximate composition of the experimental diets (g/ kg diet).	38
Table (6)	Biochemical tests conducted for the identification of the strain <i>Bacillus subtilis</i> .	44
Table (7)	Chemical composition of commercial soybean meal (CSBM) and fermented soybean meal (FSBM) with <i>B. subtilis</i> .	45
Table (8)	Analatical amino acid composition of commercial soybean meal and fermented soybean meal	48
Table (9)	Growth performance of Nile tilapia affected by replacement of fish meal by <i>Bacillus subtilis</i> fermented soybean meal.	51
Table (10)	Feed utilization of Nile tilapia affected by replacement of fish meal by <i>Bacillus subtilis</i> fermented soybean meal.	56
Table (11)	Proximate analysis of Nile tilapia affected by replacement of fish meal by <i>Bacillus subtilis</i> fermented soybean meal	58

Table (12)	Biological parameters of Nile tilapia affected by replacement of fish meal by <i>Bacillus subtilis</i> fermented soybean meal.	60
Table (13)	Hemoglobin, Hematocrit, erythrocyte blood cell, white blood cell, plated count and serum glucose of Nile tilapia as affected by replacement of fish meal by <i>Bacillus subtilis</i> fermented soybean meal.	63
Table (14)	Analatical amino acid composition of fish meal and corn gluten.	68
Table (15)	Growth performance of Nile tilapia affected by feeding different fish meal free diets with using fermented soybean meal by <i>B. subtilis</i> .	71
Table (16)	Feed utilization of Nile tilapia as affected by feeding different fish meal free diets with using fermented soybean meal by <i>B. subtilis</i> .	77
Table (17)	Proximate analysis of Nile tilapia affected by feeding different fish meal free diets with using fermented soybean meal by <i>B. subtilis</i> .	80
Table (18)	Biologial parameters of Nile tilapia affected by feeding different fish meal free diets with using fermented soybean meal by <i>B.subtilis</i> .	82
Table (19)	Hemoglobin, Hematocrit, erythrocyte blood cell, white blood cell, plated count and serum glucose of Nile tilapia affected by feeding different fish meal free diets with using fermented soybean meal by <i>B. subtilis</i> .	84

LIST OF FIGURES

Figure (1)	Annual trend of fisheries production in Egypt 2004-2013	4
Figure (2)	Production percentage (%) from natural fisheries and aquaculture - 2013	5
Figure (3) Figure (4)	Body weight changes for nile tilapia fed the frist experimental diets. Histological sections of the liver of Nile tilapia fed the first experimental diet.	53 64
Figure (5)	Histological sections of mucosal folds of the intestine of Nile tilapia fed the first experimental diets.	66
Figure (6)	Body weight changes for nile tilapia fed the socned experimental diets.	7 4
Figure (7)	Histological sections of the liver of Nile tilapia fed the second experimental diets.	85
Figure (8)	Histological sections of mucosal folds of the intestine of Nile tilapia fed the second experimental diets.	87